The perimeter of a rectangle is given by the formula [tex]P=2w+2l[/tex], where [tex]w[/tex] is the width and [tex]l[/tex] is the length. Rearrange the formula for the length [tex](l)[/tex].

A. [tex]l = P - \frac{1}{2}w[/tex]
B. [tex]l = \frac{1}{2}w - P[/tex]
C. [tex]l = 2P - 2w[/tex]
D. [tex]l = \frac{1}{2}P - w[/tex]



Answer :

To solve for the length [tex]\( l \)[/tex] in the given perimeter formula for a rectangle, [tex]\( P = 2w + 2l \)[/tex], we need to rearrange the equation step-by-step:

1. Starting Equation:
[tex]\[ P = 2w + 2l \][/tex]

2. Isolate the term involving [tex]\( l \)[/tex]:
Subtract [tex]\( 2w \)[/tex] from both sides of the equation:
[tex]\[ P - 2w = 2l \][/tex]

3. Solve for [tex]\( l \)[/tex]:
Divide both sides of the equation by 2:
[tex]\[ l = \frac{P - 2w}{2} \][/tex]

4. Simplify the Expression:
Distribute the division:
[tex]\[ l = \frac{P}{2} - \frac{2w}{2} \][/tex]
[tex]\[ l = \frac{P}{2} - w \][/tex]

Therefore, the correctly rearranged formula for the length [tex]\( l \)[/tex] is:
[tex]\[ l = \frac{P}{2} - w \][/tex]

Among the given options:
- [tex]\( l = P - \frac{1}{2}w \)[/tex]
- [tex]\( l = \frac{1}{2}w - P \)[/tex]
- [tex]\( l = 2P - 2w \)[/tex]
- [tex]\( l = \frac{1}{2}P - w \)[/tex]

The correct answer is:
[tex]\[ l = \frac{1}{2}P - w \][/tex]