Compare [tex]\sqrt{130}[/tex] and [tex]\frac{111}{8}[/tex] using [tex]\ \textless \ [/tex], [tex]\geqslant[/tex], or [tex]=[/tex]:

A. [tex]\sqrt{130} \ \textgreater \ \frac{111}{8}[/tex]
B. [tex]\sqrt{130} = \frac{111}{8}[/tex]
C. [tex]\frac{111}{8} \ \textgreater \ \sqrt{130}[/tex]
D. [tex]\frac{111}{8} \ \textless \ \sqrt{130}[/tex]



Answer :

Let's compare [tex]\(\sqrt{130}\)[/tex] and [tex]\(\frac{111}{8}\)[/tex].

First, we need to determine the numerical values of [tex]\(\sqrt{130}\)[/tex] and [tex]\(\frac{111}{8}\)[/tex].

1. Calculate [tex]\(\sqrt{130}\)[/tex]:
- The value of [tex]\(\sqrt{130}\)[/tex] is approximately [tex]\(11.40175425099138\)[/tex].

2. Calculate [tex]\(\frac{111}{8}\)[/tex]:
- [tex]\(\frac{111}{8}\)[/tex] equals [tex]\(13.875\)[/tex].

Now we compare these two values:

- [tex]\(\sqrt{130} \approx 11.40175425099138\)[/tex]
- [tex]\(\frac{111}{8} = 13.875\)[/tex]

Looking at these values:
- [tex]\(11.40175425099138\)[/tex] (which is [tex]\(\sqrt{130}\)[/tex]) is less than [tex]\(13.875\)[/tex] (which is [tex]\(\frac{111}{8}\)[/tex]).

Therefore, the correct comparison is:
[tex]\[ \frac{111}{8} > \sqrt{130} \][/tex]

So, the correct answer from the provided choices is:
[tex]\[ \boxed{\frac{111}{8} > \sqrt{130}} \][/tex]