```latex
\begin{tabular}{|c|c|}
\hline
[tex]$7 - 8$[/tex] & [tex]$-4 - 5$[/tex] \\
\hline
[tex]$-2 \times (-2)$[/tex] & [tex]$9 \times (-1)$[/tex] \\
\hline
[tex]$-49 \div (-7)$[/tex] & [tex]$-56 \div 7$[/tex] \\
\hline
[tex]$-3 + 7$[/tex] & [tex]$-3 + (-7)$[/tex] \\
\hline
[tex]$-8 - (-8)$[/tex] & [tex]$2 - 13$[/tex] \\
\hline
[tex]$-1 \times 1$[/tex] & [tex]$-2 \times 6$[/tex] \\
\hline
[tex]$12 \div (-4)$[/tex] & [tex]$-84 \div 7$[/tex] \\
\hline
\end{tabular}
```



Answer :

Let's break down and solve each of the expressions given in the table step by step:

1. First row:
- [tex]\( 7 - 8 \)[/tex]
- [tex]\( -4 - 5 \)[/tex]

Solutions:
- [tex]\(7 - 8 = -1\)[/tex]
- [tex]\(-4 - 5 = -9\)[/tex]

2. Second row:
- [tex]\(-2 \times (-2)\)[/tex]
- [tex]\(9 \times (-1)\)[/tex]

Solutions:
- [tex]\(-2 \times (-2) = 4\)[/tex]
- [tex]\(9 \times (-1) = -9\)[/tex]

3. Third row:
- [tex]\(-49 \div (-7)\)[/tex]
- [tex]\(-56 \div 7\)[/tex]

Solutions:
- [tex]\(-49 \div (-7) = 7\)[/tex]
- [tex]\(-56 \div 7 = -8\)[/tex]

4. Fourth row:
- [tex]\(-3 + 7\)[/tex]
- [tex]\(-3 + (-7)\)[/tex]

Solutions:
- [tex]\(-3 + 7 = 4\)[/tex]
- [tex]\(-3 + (-7) = -10\)[/tex]

5. Fifth row:
- [tex]\(-8 - (-8)\)[/tex]
- [tex]\(2 - 13\)[/tex]

Solutions:
- [tex]\(-8 - (-8) = 0\)[/tex]
- [tex]\(2 - 13 = -11\)[/tex]

6. Sixth row:
- [tex]\(-1 \times 1\)[/tex]
- [tex]\(-2 \times 6\)[/tex]

Solutions:
- [tex]\(-1 \times 1 = -1\)[/tex]
- [tex]\(-2 \times 6 = -12\)[/tex]

7. Seventh row:
- [tex]\(12 \div (-4)\)[/tex]
- [tex]\(-84 \div 7\)[/tex]

Solutions:
- [tex]\(12 \div (-4) = -3\)[/tex]
- [tex]\(-84 \div 7 = -12\)[/tex]

Compiling these results, we get the following list of solutions:

[tex]\[ [-1, -9, 4, -9, 7, -8, 4, -10, 0, -11, -1, -12, -3, -12] \][/tex]