Identify the location of the values [tex]\sqrt{12}[/tex], [tex]\sqrt{15}[/tex], and [tex]\frac{22}{9}[/tex] on the number line.

A. Point A is [tex]\sqrt{12}[/tex], point B is [tex]\sqrt{15}[/tex], and point C is [tex]\frac{22}{9}[/tex].
B. Point A is [tex]\frac{22}{9}[/tex], point B is [tex]\sqrt{15}[/tex], and point C is [tex]\sqrt{12}[/tex].
C. Point A is [tex]\sqrt{12}[/tex], point B is [tex]\frac{22}{9}[/tex], and point C is [tex]\sqrt{15}[/tex].
D. Point A is [tex]\frac{22}{9}[/tex], point B is [tex]\sqrt{12}[/tex], and point C is [tex]\sqrt{15}[/tex].



Answer :

Let's solve the problem of identifying the locations on the number line for the values [tex]\(\sqrt{12}\)[/tex], [tex]\(\sqrt{15}\)[/tex], and [tex]\(\frac{22}{9}\)[/tex], and match those values to the options given for points [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(C\)[/tex].

### Step 1: Calculate the Values
- [tex]\(\sqrt{12}\)[/tex]: The square root of 12 is approximately 3.4641.
- [tex]\(\sqrt{15}\)[/tex]: The square root of 15 is approximately 3.8730.
- [tex]\(\frac{22}{9}\)[/tex]: The fraction [tex]\(\frac{22}{9}\)[/tex] is approximately 2.4444.

### Step 2: Identify the Relative Positions on the Number Line
- [tex]\(\sqrt{12} \approx 3.4641\)[/tex]
- [tex]\(\sqrt{15} \approx 3.8730\)[/tex]
- [tex]\(\frac{22}{9} \approx 2.4444\)[/tex]

Clearly, comparing these values:
- [tex]\(\frac{22}{9} \approx 2.4444\)[/tex] is the smallest.
- [tex]\(\sqrt{12} \approx 3.4641\)[/tex] is in the middle.
- [tex]\(\sqrt{15} \approx 3.8730\)[/tex] is the largest.

### Step 3: Match the Points with the Values
Review the four given options:

Option 1:
- Point [tex]\(A\)[/tex] is [tex]\(\sqrt{12}\)[/tex] ([tex]\(\approx 3.4641\)[/tex]),
- Point [tex]\(B\)[/tex] is [tex]\(\sqrt{15}\)[/tex] ([tex]\(\approx 3.8730\)[/tex]),
- Point [tex]\(C\)[/tex] is [tex]\(\frac{22}{9}\)[/tex] ([tex]\(\approx 2.4444\)[/tex]).

This matches the values exactly as calculated, so this is a correct arrangement.

Option 2:
- Point [tex]\(A\)[/tex] is [tex]\(\frac{22}{9}\)[/tex] ([tex]\(\approx 2.4444\)[/tex]),
- Point [tex]\(B\)[/tex] is [tex]\(\sqrt{15}\)[/tex] ([tex]\(\approx 3.8730\)[/tex]),
- Point [tex]\(C\)[/tex] is [tex]\(\sqrt{12}\)[/tex] ([tex]\(\approx 3.4641\)[/tex]).

In this option, point [tex]\(A\)[/tex] is the smallest value [tex]\(\frac{22}{9}\)[/tex], which also follows the relative positions well.

Option 3:
- Point [tex]\(A\)[/tex] is [tex]\(\sqrt{12}\)[/tex] ([tex]\(\approx 3.4641\)[/tex]),
- Point [tex]\(B\)[/tex] is [tex]\(\frac{22}{9}\)[/tex] ([tex]\(\approx 2.4444\)[/tex]),
- Point [tex]\(C\)[/tex] is [tex]\(\sqrt{15}\)[/tex] ([tex]\(\approx 3.8730\)[/tex]).

This arrangement does not respect the correct positions because point [tex]\(B\)[/tex] should be the smallest, but here it is placed in the middle.

Option 4:
- Point [tex]\(A\)[/tex] is [tex]\(\frac{22}{9}\)[/tex] ([tex]\(\approx 2.4444\)[/tex]),
- Point [tex]\(B\)[/tex] is [tex]\(\sqrt{12}\)[/tex] ([tex]\(\approx 3.4641\)[/tex]),
- Point [tex]\(C\)[/tex] is [tex]\(\sqrt{15}\)[/tex] ([tex]\(\approx 3.8730\)[/tex]).

This option also correctly follows the order on the number line.

### Conclusion:
The correct points arrangement based on the values and the relative positions on the number line are:

- Option 1: Point [tex]\(A\)[/tex] is [tex]\(\sqrt{12}\)[/tex], point [tex]\(B\)[/tex] is [tex]\(\sqrt{15}\)[/tex], and point [tex]\(C\)[/tex] is [tex]\(\frac{22}{9}\)[/tex].
- Option 2: Point [tex]\(A\)[/tex] is [tex]\(\frac{22}{9}\)[/tex], point [tex]\(B\)[/tex] is [tex]\(\sqrt{15}\)[/tex], and point [tex]\(C\)[/tex] is [tex]\(\sqrt{12}\)[/tex].
- Option 4: Point [tex]\(A\)[/tex] is [tex]\(\frac{22}{9}\)[/tex], point [tex]\(B\)[/tex] is [tex]\(\sqrt{12}\)[/tex], and point [tex]\(C\)[/tex] is [tex]\(\sqrt{15}\)[/tex].

However, options 3 does not follow the correct positional order based on the calculated values.