Solve the following and graph the solutions:

[tex]\[
\begin{array}{c}
-3x + 7 \ \textgreater \ -1 \text{ or } -3x + 7 \ \textless \ 1 \\
x \ \textless \ \frac{8}{3} \text{ or } x \ \textgreater \ 2
\end{array}
\][/tex]

[tex]\[
x \ \textless \ \frac{8}{3} \text{ or } x \ \textgreater \ 2
\][/tex]

[tex]\[
x \ \textless \ \frac{8}{3} \text{ or } x \ \textgreater \ 2
\][/tex]

[tex]\[
x \ \textless \ \frac{8}{3} \text{ or } x \ \textgreater \ 2
\][/tex]



Answer :

To solve the given inequalities, let's take it step by step and ensure we understand the logic behind the solution.

### Step 1: Given Inequalities

We start with the given inequalities:

[tex]\[ -3x + 7 > -1 \text{ or } -3x + 7 < 1 \][/tex]

### Step 2: Solving Each Inequality Separately

Let's solve each part of the inequality separately:

#### For [tex]\( -3x + 7 > -1 \)[/tex]:

1. Subtract 7 from both sides:
[tex]\[ -3x + 7 - 7 > -1 - 7 \][/tex]
[tex]\[ -3x > -8 \][/tex]

2. Divide both sides by -3 (and remember to reverse the inequality sign because we are dividing by a negative number):
[tex]\[ x < \frac{8}{3} \][/tex]

#### For [tex]\( -3x + 7 < 1 \)[/tex]:

1. Subtract 7 from both sides:
[tex]\[ -3x + 7 - 7 < 1 - 7 \][/tex]
[tex]\[ -3x < -6 \][/tex]

2. Divide both sides by -3 (again, reversing the inequality sign):
[tex]\[ x > 2 \][/tex]

### Step 3: Combining the Solutions

From the two parts, you get:

[tex]\[ x < \frac{8}{3} \text{ or } x > 2 \][/tex]

### Step 4: Interval Notation

To write this solution in interval notation, we need to describe it using the appropriate intervals:

[tex]\[ (-\infty, \frac{8}{3}) \cup (2, \infty) \][/tex]

### Step 5: Graphing the Solution

To graph the solution, you can draw a number line and shade the regions as follows:

1. Shade the region to the left of [tex]\( \frac{8}{3} \)[/tex]. This includes all values less than [tex]\( \frac{8}{3} \)[/tex], but not [tex]\( \frac{8}{3} \)[/tex] itself.
2. Shade the region to the right of [tex]\( 2 \)[/tex]. This includes all values greater than 2, but not 2 itself.

There will be a gap between [tex]\( 2 \)[/tex] and [tex]\( \frac{8}{3} \)[/tex] because these two intervals do not overlap.

### Final Answer

Therefore, the solution set for the inequality [tex]\( -3x + 7 > -1 \)[/tex] or [tex]\( -3x + 7 < 1 \)[/tex] is:

[tex]\[ (-\infty, \frac{8}{3}) \cup (2, \infty) \][/tex]

This can be interpreted as any [tex]\( x \)[/tex] that is either less than [tex]\( \frac{8}{3} \)[/tex] or greater than 2.