A californium atom undergoes nuclear fission. Complete the equation by filling in the missing parts.

[tex]\[
{}_{98}^{252} Cf + {}_0^1 n \longrightarrow {}_{46}^{114} Pd + {}_{52}^{136} Te + 3{}_{0}^{1} n
\][/tex]



Answer :

To solve this nuclear fission equation, we need to determine the missing element and its mass number and atomic number on the right-hand side of the equation. Let's break it down step-by-step:

1. Identify the given elements and particles:
- Left-hand side:
- Californium (Cf) with mass number 252 and atomic number 98: [tex]\({ }_{98}^{252} Cf\)[/tex]
- A neutron with mass number 1 and atomic number 0: [tex]\({ }_0^1 n\)[/tex]

- Right-hand side:
- Tellurium (Te) with mass number 136 and atomic number 52: [tex]\({ }_{52}^{136} Te\)[/tex]
- Three neutrons, each with mass number 1 and atomic number 0: [tex]\(3{ }_0^1 n\)[/tex]

2. Calculate the total mass number and atomic number on the left-hand side:
[tex]\[ \text{Total mass number (LHS)} = 252 + 1 = 253 \][/tex]
[tex]\[ \text{Total atomic number (LHS)} = 98 + 0 = 98 \][/tex]

3. Calculate the total mass number and atomic number contributed by known products on the right-hand side:
[tex]\[ \text{Mass number from Te and neutrons (RHS)} = 136 + 3 \times 1 = 136 + 3 = 139 \][/tex]
[tex]\[ \text{Atomic number from Te (RHS)} = 52 \][/tex]

4. Determine the mass number and atomic number of the missing fragment:
- Mass number of the missing fragment:
[tex]\[ \text{Mass number (missing)} = \text{Total mass number (LHS)} - \text{Mass number (RHS)} = 253 - 139 = 114 \][/tex]
- Atomic number of the missing fragment:
[tex]\[ \text{Atomic number (missing)} = \text{Total atomic number (LHS)} - \text{Atomic number (RHS)} = 98 - 52 = 46 \][/tex]

5. Identify the element with atomic number 46:
- The element with atomic number 46 is Palladium (Pd).

6. Complete the nuclear equation:
[tex]\[ { }_{98}^{252} Cf +{ }_0^1 n \longrightarrow { }_{46}^{114} Pd + { }_{52}^{136} Te +3{ }_0^1 n \][/tex]

So, the completed equation with the missing isotope filled in is:
[tex]\[ { }_{98}^{252} Cf +{ }_0^1 n \longrightarrow { }_{46}^{114} Pd + { }_{52}^{136} Te +3{ }_0^1 n \][/tex]