Select the correct answer.

Which expression is equivalent to the given expression?

[tex]\[ \frac{\left(3 m^2 n\right)^3}{m n^4} \][/tex]

A. [tex]\(\frac{27 m^5}{n}\)[/tex]

B. [tex]\(9 m^4 n\)[/tex]

C. [tex]\(\frac{9 m^5}{n}\)[/tex]

D. [tex]\(27 m^4 n\)[/tex]



Answer :

Let's simplify the given expression step-by-step.

The given expression is:

[tex]\[ \frac{(3 m^2 n)^3}{m n^4} \][/tex]

1. First, expand the numerator [tex]\((3 m^2 n)^3\)[/tex]:
- Apply the exponent to each term inside the parentheses:

[tex]\[ (3 m^2 n)^3 = 3^3 \cdot (m^2)^3 \cdot (n)^3 \][/tex]

2. Calculate each individual term:
- [tex]\(3^3 = 27\)[/tex]
- [tex]\((m^2)^3 = m^{2 \cdot 3} = m^6\)[/tex]
- [tex]\(n^3\)[/tex] remains [tex]\(n^3\)[/tex]

Therefore, the numerator becomes:

[tex]\[ 27 m^6 n^3 \][/tex]

3. Write out the fraction with the simplified numerator:

[tex]\[ \frac{27 m^6 n^3}{m n^4} \][/tex]

4. Simplify the fraction:
- Simplify the [tex]\(m\)[/tex] terms: [tex]\(\frac{m^6}{m} = m^{6-1} = m^5\)[/tex]
- Simplify the [tex]\(n\)[/tex] terms: [tex]\(\frac{n^3}{n^4} = n^{3-4} = n^{-1}\)[/tex]

Therefore, the fraction simplifies to:

[tex]\[ 27 m^5 n^{-1} \][/tex]

5. Convert the negative exponent:
- [tex]\(n^{-1} = \frac{1}{n}\)[/tex]

Thus, the simplified expression is:

[tex]\[ \frac{27 m^5}{n} \][/tex]

The equivalent expression to [tex]\(\frac{(3 m^2 n)^3}{m n^4}\)[/tex] is:

[tex]\[ \boxed{\frac{27 m^5}{n}} \][/tex]

So, the correct answer is:

A. [tex]\(\frac{27 m^5}{n}\)[/tex]