Select the correct answer.

Sue's taxable income is [tex]\$30,000[/tex] a year after accounting for deductions. Assuming she does not apply for tax credits, what is the correct way to compute the tax she owes? Use the following tax table.

\begin{tabular}{|c|c|}
\hline Taxable Income & Tax Rate \\
\hline[tex]\$0 - \$9,875[/tex] & [tex]10\%[/tex] \\
\hline[tex]\$9,876 - \$40,125[/tex] & [tex]12\%[/tex] \\
\hline
\end{tabular}

A. [tex]10\% \times \$9,875 + 12\% \times (\[tex]$30,000 - \$[/tex]9,875)[/tex]

B. [tex]12\% \times \$30,000[/tex]

C. [tex]10\% \times \$9,875 + 12\% \times \$30,000[/tex]

D. [tex]12\% \times (\$40,125 - \[tex]$30,000)[/tex]

E. [tex]10\% \times \$[/tex]9,875 + 12\% \times (\[tex]$40,125 - \$[/tex]30,000)[/tex]



Answer :

To determine the correct way to compute the tax Sue owes, let's analyze each option step by step:

#### Option A:
[tex]\[10\% \times \$9{,}875 + 12\% \times (\$30{,}000 - \$9{,}875)\][/tex]
1. Compute the tax for the first bracket:
[tex]\[0.10 \times \$9{,}875 = \$987.50\][/tex]
2. Compute the tax for the remaining income in the second bracket:
[tex]\[0.12 \times (\$30{,}000 - \$9{,}875) = 0.12 \times \$20{,}125 = \$2{,}415.00\][/tex]
3. Sum the taxes:
[tex]\[\$987.50 + \$2{,}415.00 = \$3{,}402.50\][/tex]

#### Option B:
[tex]\[12\% \times \$30{,}000\][/tex]
1. Compute the tax directly:
[tex]\[0.12 \times \$30{,}000 = \$3{,}600.00\][/tex]

#### Option C:
[tex]\[10\% \times \$9{,}875 + 12\% \times \$30{,}000\][/tex]
1. Compute the tax for the first bracket:
[tex]\[0.10 \times \$9{,}875 = \$987.50\][/tex]
2. Compute the tax for the entire taxable income in the second bracket:
[tex]\[0.12 \times \$30{,}000 = \$3{,}600.00\][/tex]
3. Sum the taxes:
[tex]\[\$987.50 + \$3{,}600.00 = \$4{,}587.50\][/tex]

#### Option D:
[tex]\[12\% \times (\$40{,}125 - \$30{,}000)\][/tex]
1. Compute the tax for the difference:
[tex]\[0.12 \times (\$40{,}125 - \$30{,}000) = 0.12 \times \$10{,}125 = \$1{,}215.00\][/tex]

#### Option E:
[tex]\[10\% \times \$9{,}875 + 12\% \times (\$40{,}125 - \$30{,}000)\][/tex]
1. Compute the tax for the first bracket:
[tex]\[0.10 \times \$9{,}875 = \$987.50\][/tex]
2. Compute the tax for the difference:
[tex]\[0.12 \times (\$40{,}125 - \$30{,}000) = 0.12 \times \$10{,}125 = \$1{,}215.00\][/tex]
3. Sum the taxes:
[tex]\[\$987.50 + \$1{,}215.00 = \$2{,}202.50\][/tex]

Comparing the computed values:
- Option A: \[tex]$3{,}402.50 - Option B: \$[/tex]3{,}600.00
- Option C: \[tex]$4{,}587.50 - Option D: \$[/tex]1{,}215.00
- Option E: \[tex]$2{,}202.50 Therefore, the correct answer is: A. \(10\% \times \$[/tex]9{,}875 + 12\% \times(\[tex]$30{,}000 - \$[/tex]9{,}875)\)

This option accurately represents the tax computation given Sue's taxable income of \$30,000 within the defined tax brackets.