The provided text appears to be a series of mathematical expressions involving the number 7. Some expressions do not follow conventional mathematical rules and appear to contain errors or nonsensical elements. I'll correct and format the text into a coherent set of mathematical problems:

```
Evaluate the following expressions involving the number 7:

1. [tex]\( 7 \cdot 7 \cdot 7 \cdot 7 = ? \)[/tex]
2. [tex]\( 7 + 7 + 7 + 7 = ? \)[/tex]
3. [tex]\( 7 - 7 + 7 \times 7 = ? \)[/tex]
4. [tex]\( 7 + 7 + 7 \div 7 = ? \)[/tex]
```

This will provide a clear and sensible set of problems for the reader to solve.



Answer :

To solve these equations, we perform the operations step-by-step.

1. [tex]\( 7 \cdot 7 \cdot 7 \cdot 7 \)[/tex]
- We multiply the number 7 four times.
- [tex]\( 7 \cdot 7 = 49 \)[/tex]
- [tex]\( 49 \cdot 7 = 343 \)[/tex]
- [tex]\( 343 \cdot 7 = 2401 \)[/tex]

So, [tex]\( 7 \cdot 7 \cdot 7 \cdot 7 = 2401 \)[/tex].

2. [tex]\( 7 + 7 + 7 + 7 \)[/tex]
- We add the number 7 four times.
- [tex]\( 7 + 7 = 14 \)[/tex]
- [tex]\( 14 + 7 = 21 \)[/tex]
- [tex]\( 21 + 7 = 28 \)[/tex]

So, [tex]\( 7 + 7 + 7 + 7 = 28 \)[/tex].

3. [tex]\( 7 + 7 + 7 - 7 \)[/tex]
- We perform the addition and subtraction in order.
- [tex]\( 7 + 7 = 14 \)[/tex]
- [tex]\( 14 + 7 = 21 \)[/tex]
- [tex]\( 21 - 7 = 14 \)[/tex]

So, [tex]\( 7 + 7 + 7 - 7 = 14 \)[/tex].

4. [tex]\( 7 + 7 + 7 \div 7 \)[/tex]
- We follow the order of operations, performing the division first and then the additions.
- [tex]\( 7 \div 7 = 1 \)[/tex]
- [tex]\( 7 + 7 = 14 \)[/tex]
- [tex]\( 14 + 1 = 15 \)[/tex]

So, [tex]\( 7 + 7 + 7 \div 7 = 15 \)[/tex].

5. [tex]\( 7 \cdot 7 - 7 \cdot 7 \)[/tex]
- We perform the multiplications first and then the subtraction.
- [tex]\( 7 \cdot 7 = 49 \)[/tex]
- [tex]\( 7 \cdot 7 = 49 \)[/tex]
- [tex]\( 49 - 49 = 0 \)[/tex]

So, [tex]\( 7 \cdot 7 - 7 \cdot 7 = 0 \)[/tex].

6. [tex]\( 7 - 7 + 7 \cdot 7 \)[/tex]
- We follow the order of operations, performing the multiplication first and then the additions and subtractions.
- [tex]\( 7 \cdot 7 = 49 \)[/tex]
- [tex]\( 7 - 7 = 0 \)[/tex]
- [tex]\( 0 + 49 = 49 \)[/tex]

So, [tex]\( 7 - 7 + 7 \cdot 7 = 49 \)[/tex].

Therefore, the results for the given equations are:
[tex]\( (2401, 28, 14, 15.0, 0, 49) \)[/tex].