Algebra: Concepts and Connections A (R) 2023-24

In which table(s) does [tex]$y$[/tex] vary directly with [tex]$x$[/tex]? Check all that apply.

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
1 & 3 \\
\hline
3 & 9 \\
\hline
6 & 18 \\
\hline
7 & 21 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-4 & -2 \\
\hline
-2 & -1 \\
\hline
2 & 1 \\
\hline
6 & 3 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-2 & 2 \\
\hline
-1 & 1 \\
\hline
2 & -2 \\
\hline
5 & -5 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-1 & 0 \\
\hline
0 & -1 \\
\hline
1 & -2 \\
\hline
2 & -3 \\
\hline
\end{tabular}



Answer :

To determine whether [tex]\( y \)[/tex] varies directly with [tex]\( x \)[/tex] in each table, we need to see if there exists a constant [tex]\( k \)[/tex] such that [tex]\( y = kx \)[/tex] for all pairs [tex]\( (x, y) \)[/tex] in each table. Specifically, [tex]\( k \)[/tex] should be the same value for each pair in the table.

### Table 1:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 3 \\ \hline 3 & 9 \\ \hline 6 & 18 \\ \hline 7 & 21 \\ \hline \end{array} \][/tex]

Calculate [tex]\( k \)[/tex] for each pair:
[tex]\[ k = \frac{y}{x} \][/tex]
[tex]\[ k_1 = \frac{3}{1} = 3 \][/tex]
[tex]\[ k_2 = \frac{9}{3} = 3 \][/tex]
[tex]\[ k_3 = \frac{18}{6} = 3 \][/tex]
[tex]\[ k_4 = \frac{21}{7} = 3 \][/tex]

Since [tex]\( k \)[/tex] is consistently 3 for all pairs, [tex]\( y \)[/tex] varies directly with [tex]\( x \)[/tex] in Table 1.

### Table 2:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -4 & -2 \\ \hline -2 & -1 \\ \hline 2 & 1 \\ \hline 6 & 3 \\ \hline \end{array} \][/tex]

Calculate [tex]\( k \)[/tex] for each pair:
[tex]\[ k_1 = \frac{-2}{-4} = \frac{1}{2} \][/tex]
[tex]\[ k_2 = \frac{-1}{-2} = \frac{1}{2} \][/tex]
[tex]\[ k_3 = \frac{1}{2} = \frac{1}{2} \][/tex]
[tex]\[ k_4 = \frac{3}{6} = \frac{1}{2} \][/tex]

Since [tex]\( k \)[/tex] is consistently [tex]\( \frac{1}{2} \)[/tex] for all pairs, [tex]\( y \)[/tex] varies directly with [tex]\( x \)[/tex] in Table 2.

### Table 3:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -2 & 2 \\ \hline -1 & 1 \\ \hline 2 & -2 \\ \hline 5 & -5 \\ \hline \end{array} \][/tex]

Calculate [tex]\( k \)[/tex] for each pair:
[tex]\[ k_1 = \frac{2}{-2} = -1 \][/tex]
[tex]\[ k_2 = \frac{1}{-1} = -1 \][/tex]
[tex]\[ k_3 = \frac{-2}{2} = -1 \][/tex]
[tex]\[ k_4 = \frac{-5}{5} = -1 \][/tex]

Since [tex]\( k \)[/tex] is consistently [tex]\( -1 \)[/tex] for all pairs, [tex]\( y \)[/tex] varies directly with [tex]\( x \)[/tex] in Table 3.

### Table 4:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -1 & 0 \\ \hline 0 & -1 \\ \hline 1 & -2 \\ \hline 2 & -3 \\ \hline \end{array} \][/tex]

Calculate [tex]\( k \)[/tex] for each pair:

Note that direct variation requires [tex]\( \frac{y}{x} \)[/tex] to be constant, and for [tex]\( x = 0 \)[/tex], [tex]\( y \)[/tex] should also be 0. However, when [tex]\( x=0 \)[/tex], [tex]\( y \)[/tex] is -1 which does not hold for direct variation.
[tex]\[ k_1 = \frac{0}{-1} = 0 / -1 = 0 \quad \text{(undefined)} \][/tex]
\]
This inconsistency indicates [tex]\( y \)[/tex] does not vary directly with [tex]\( x \)[/tex] in Table 4.

### Conclusion:
The tables in which [tex]\( y \)[/tex] varies directly with [tex]\( x \)[/tex] are:
[tex]\[ \boxed{1, 2, 3} \][/tex]