Concepts and Connections A (R) 2023-24

\begin{tabular}{|c|c|}
\hline
It is given that [tex]$y$[/tex] is directly proportional to [tex]$x$[/tex]. \\
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
1 & -4 \\
\hline
2 & -8 \\
\hline
3 & -12 \\
\hline
4 & -16 \\
\hline
5 & -20 \\
\hline
\end{tabular}

What is the constant of variation?
[tex]$\square$[/tex]



Answer :

To solve the problem of finding the constant of variation when [tex]\(y\)[/tex] is directly proportional to [tex]\(x\)[/tex], let's follow these steps:

1. Understand Direct Proportionality: When we say that [tex]\(y\)[/tex] is directly proportional to [tex]\(x\)[/tex], we mean that there is a constant [tex]\(k\)[/tex] such that [tex]\(y = kx\)[/tex] for all pairs of corresponding values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex].

2. Identify the Relationship: We are given the pairs [tex]\((x, y)\)[/tex]:
- [tex]\((1, -4)\)[/tex]
- [tex]\((2, -8)\)[/tex]
- [tex]\((3, -12)\)[/tex]
- [tex]\((4, -16)\)[/tex]
- [tex]\((5, -20)\)[/tex]

3. Determine the Constant of Variation [tex]\(k\)[/tex]: To find [tex]\(k\)[/tex], we can use any pair of values; the relationship [tex]\(y = kx\)[/tex] holds for all data points.

4. Using the First Pair [tex]\((1, -4)\)[/tex]:
[tex]\[ y = kx \][/tex]
[tex]\[ -4 = k \cdot 1 \][/tex]
Solving for [tex]\(k\)[/tex]:
[tex]\[ k = -4 \][/tex]

Therefore, the constant of variation [tex]\(k\)[/tex] is [tex]\(-4\)[/tex].