Enter the values for the variables that give the correct simplified expressions, [tex]x \geq 0[/tex].

[tex]\[
\begin{array}{l}
\sqrt{50 x^2} = \sqrt{25 \cdot 2 \cdot x^2} = 5 x \sqrt{b} \\
b = \square \\
\sqrt{32 x} = \sqrt{16 \cdot 2 \cdot x} = c \sqrt{2 x} \\
c = \square \\
\sqrt{18 n} = \sqrt{9 \cdot 2 \cdot n} = e \sqrt{2 n} \\
e = \square \\
\sqrt{72 x^2} = \sqrt{36 \cdot 2 \cdot x^2} = g x \sqrt{2} \\
g = \square
\end{array}
\][/tex]



Answer :

Let's simplify each of the given expressions step by step to find the values for the variables [tex]\( b \)[/tex], [tex]\( c \)[/tex], [tex]\( e \)[/tex], and [tex]\( g \)[/tex]:

1. [tex]\(\sqrt{50x^2}\)[/tex]:
[tex]\[ \sqrt{50x^2} = \sqrt{25 \cdot 2 \cdot x^2} \][/tex]
We know that [tex]\(\sqrt{25} = 5\)[/tex] and [tex]\(\sqrt{x^2} = x\)[/tex], so we can simplify this expression as:
[tex]\[ \sqrt{25 \cdot 2 \cdot x^2} = 5x\sqrt{2} \][/tex]
Thus, the value of [tex]\( b \)[/tex] is:
[tex]\[ b = 2 \][/tex]

2. [tex]\(\sqrt{32x}\)[/tex]:
[tex]\[ \sqrt{32x} = \sqrt{16 \cdot 2 \cdot x} \][/tex]
We know that [tex]\(\sqrt{16} = 4\)[/tex], so we can simplify this expression as:
[tex]\[ \sqrt{16 \cdot 2 \cdot x} = 4\sqrt{2x} \][/tex]
Thus, the value of [tex]\( c \)[/tex] is:
[tex]\[ c = 4 \][/tex]

3. [tex]\(\sqrt{18n}\)[/tex]:
[tex]\[ \sqrt{18n} = \sqrt{9 \cdot 2 \cdot n} \][/tex]
We know that [tex]\(\sqrt{9} = 3\)[/tex], so we can simplify this expression as:
[tex]\[ \sqrt{9 \cdot 2 \cdot n} = 3\sqrt{2n} \][/tex]
Thus, the value of [tex]\( e \)[/tex] is:
[tex]\[ e = 3 \][/tex]

4. [tex]\(\sqrt{72x^2}\)[/tex]:
[tex]\[ \sqrt{72x^2} = \sqrt{36 \cdot 2 \cdot x^2} \][/tex]
We know that [tex]\(\sqrt{36} = 6\)[/tex] and [tex]\(\sqrt{x^2} = x\)[/tex], so we can simplify this expression as:
[tex]\[ \sqrt{36 \cdot 2 \cdot x^2} = 6x\sqrt{2} \][/tex]
Thus, the value of [tex]\( g \)[/tex] is:
[tex]\[ g = 6 \][/tex]

In summary, the values are:
[tex]\[ b = 2 \\ c = 4 \\ e = 3 \\ g = 6 \][/tex]