Answer :
To determine which points satisfy the inequality [tex]\( y < 0.5x + 2 \)[/tex], we need to test each given point [tex]\((x, y)\)[/tex] to see if it makes the inequality true.
1. Point [tex]\((-3, -2)\)[/tex]:
- Substitute [tex]\( x = -3 \)[/tex] and [tex]\( y = -2 \)[/tex] into the inequality:
[tex]\[ y < 0.5x + 2 \implies -2 < 0.5(-3) + 2 \][/tex]
- Compute the right-hand side:
[tex]\[ -2 < -1.5 + 2 \implies -2 < 0.5 \][/tex]
- This is true, so [tex]\((-3, -2)\)[/tex] is a solution.
2. Point [tex]\((-2, 1)\)[/tex]:
- Substitute [tex]\( x = -2 \)[/tex] and [tex]\( y = 1 \)[/tex] into the inequality:
[tex]\[ y < 0.5x + 2 \implies 1 < 0.5(-2) + 2 \][/tex]
- Compute the right-hand side:
[tex]\[ 1 < -1 + 2 \implies 1 < 1 \][/tex]
- This is false, so [tex]\((-2, 1)\)[/tex] is not a solution.
3. Point [tex]\((-1, -2)\)[/tex]:
- Substitute [tex]\( x = -1 \)[/tex] and [tex]\( y = -2 \)[/tex] into the inequality:
[tex]\[ y < 0.5x + 2 \implies -2 < 0.5(-1) + 2 \][/tex]
- Compute the right-hand side:
[tex]\[ -2 < -0.5 + 2 \implies -2 < 1.5 \][/tex]
- This is true, so [tex]\((-1, -2)\)[/tex] is a solution.
4. Point [tex]\((-1, 2)\)[/tex]:
- Substitute [tex]\( x = -1 \)[/tex] and [tex]\( y = 2 \)[/tex] into the inequality:
[tex]\[ y < 0.5x + 2 \implies 2 < 0.5(-1) + 2 \][/tex]
- Compute the right-hand side:
[tex]\[ 2 < -0.5 + 2 \implies 2 < 1.5 \][/tex]
- This is false, so [tex]\((-1, 2)\)[/tex] is not a solution.
5. Point [tex]\((1, -2)\)[/tex]:
- Substitute [tex]\( x = 1 \)[/tex] and [tex]\( y = -2 \)[/tex] into the inequality:
[tex]\[ y < 0.5x + 2 \implies -2 < 0.5(1) + 2 \][/tex]
- Compute the right-hand side:
[tex]\[ -2 < 0.5 + 2 \implies -2 < 2.5 \][/tex]
- This is true, so [tex]\((1, -2)\)[/tex] is a solution.
The points that satisfy the inequality [tex]\( y < 0.5x + 2 \)[/tex] are:
[tex]\[ \boxed{(-3, -2), (-1, -2), (1, -2)} \][/tex]
1. Point [tex]\((-3, -2)\)[/tex]:
- Substitute [tex]\( x = -3 \)[/tex] and [tex]\( y = -2 \)[/tex] into the inequality:
[tex]\[ y < 0.5x + 2 \implies -2 < 0.5(-3) + 2 \][/tex]
- Compute the right-hand side:
[tex]\[ -2 < -1.5 + 2 \implies -2 < 0.5 \][/tex]
- This is true, so [tex]\((-3, -2)\)[/tex] is a solution.
2. Point [tex]\((-2, 1)\)[/tex]:
- Substitute [tex]\( x = -2 \)[/tex] and [tex]\( y = 1 \)[/tex] into the inequality:
[tex]\[ y < 0.5x + 2 \implies 1 < 0.5(-2) + 2 \][/tex]
- Compute the right-hand side:
[tex]\[ 1 < -1 + 2 \implies 1 < 1 \][/tex]
- This is false, so [tex]\((-2, 1)\)[/tex] is not a solution.
3. Point [tex]\((-1, -2)\)[/tex]:
- Substitute [tex]\( x = -1 \)[/tex] and [tex]\( y = -2 \)[/tex] into the inequality:
[tex]\[ y < 0.5x + 2 \implies -2 < 0.5(-1) + 2 \][/tex]
- Compute the right-hand side:
[tex]\[ -2 < -0.5 + 2 \implies -2 < 1.5 \][/tex]
- This is true, so [tex]\((-1, -2)\)[/tex] is a solution.
4. Point [tex]\((-1, 2)\)[/tex]:
- Substitute [tex]\( x = -1 \)[/tex] and [tex]\( y = 2 \)[/tex] into the inequality:
[tex]\[ y < 0.5x + 2 \implies 2 < 0.5(-1) + 2 \][/tex]
- Compute the right-hand side:
[tex]\[ 2 < -0.5 + 2 \implies 2 < 1.5 \][/tex]
- This is false, so [tex]\((-1, 2)\)[/tex] is not a solution.
5. Point [tex]\((1, -2)\)[/tex]:
- Substitute [tex]\( x = 1 \)[/tex] and [tex]\( y = -2 \)[/tex] into the inequality:
[tex]\[ y < 0.5x + 2 \implies -2 < 0.5(1) + 2 \][/tex]
- Compute the right-hand side:
[tex]\[ -2 < 0.5 + 2 \implies -2 < 2.5 \][/tex]
- This is true, so [tex]\((1, -2)\)[/tex] is a solution.
The points that satisfy the inequality [tex]\( y < 0.5x + 2 \)[/tex] are:
[tex]\[ \boxed{(-3, -2), (-1, -2), (1, -2)} \][/tex]