Select the correct answer.

Which expression is equivalent to this polynomial expression?

[tex]\[
\left(5xy^2 + 3x^2 - 7\right) + \left(3x^2 y^2 - xy^2 + 3y^2 + 4\right)
\][/tex]

A. [tex]\[8x^2 y^2 + 2xy^2 - 4y^2 + 4\][/tex]

B. [tex]\[9x^2 y^2 + 4xy^2 - 3\][/tex]

C. [tex]\[3x^2 y^2 + 6xy^2 + 6x^2 + 3\][/tex]

D. [tex]\[3x^2 y^2 + 4xy^2 + 3x^2 + 3y^2 - 3\][/tex]



Answer :

Let's begin by simplifying the given polynomial expression:
[tex]\[ \left(5xy^2 + 3x^2 - 7\right) + \left(3x^2y^2 - xy^2 + 3y^2 + 4\right) \][/tex]

We will combine the like terms from both polynomials one step at a time.

### Step 1: Combine the [tex]\( x^2y^2 \)[/tex] terms
The terms involving [tex]\( x^2y^2 \)[/tex] from both polynomials are:
[tex]\[ 5xy^2 \quad \text{and} \quad 3x^2y^2 \][/tex]
These terms sum up to:
[tex]\[ 3x^2y^2 \][/tex]

### Step 2: Combine the [tex]\( x^2 \)[/tex] terms
The terms involving [tex]\( x^2 \)[/tex] from both polynomials are:
[tex]\[ 3x^2 + 3x^2 \][/tex]
These terms sum up to:
[tex]\[ 3x^2 \][/tex]

### Step 3: Combine the [tex]\( xy^2 \)[/tex] terms
The terms involving [tex]\( xy^2 \)[/tex] from both polynomials are:
[tex]\[ 5xy^2 - xy^2 \][/tex]
These terms sum up to:
[tex]\[ 4xy^2 \][/tex]

### Step 4: Combine the [tex]\( y^2 \)[/tex] terms
The terms involving [tex]\( y^2 \)[/tex] from both polynomials are:
[tex]\[ 3y^2 \][/tex]
This term is by itself and doesn't have a counterpart to combine with, so it remains:
[tex]\[ 3y^2 \][/tex]

### Step 5: Combine the constant terms
The constant terms from both polynomials are:
[tex]\[ -7 + 4 \][/tex]
These terms sum up to:
[tex]\[ -3 \][/tex]

Now, combining all the simplified parts together, we have the resulting polynomial expression:
[tex]\[ 3x^2y^2 + 3x^2 + 4xy^2 + 3y^2 - 3 \][/tex]

Therefore, the polynomial expression:
[tex]\[ \left(5xy^2 + 3x^2 - 7\right) + \left(3x^2y^2 - xy^2 + 3y^2 + 4\right) \][/tex]
simplifies to:
[tex]\[ 3x^2y^2 + 4xy^2 + 3x^2 + 3y^2 - 3 \][/tex]

The correct answer is:
[tex]\[ \boxed{3x^2y^2 + 4xy^2 + 3x^2 + 3y^2 - 3} \][/tex]

Comparing this with the given options, the correct answer is:
[tex]\[ \boxed{D} \][/tex]