Multiply [tex]\frac{8}{14} \cdot \frac{7}{16}[/tex]. Simplify your answer.

A. [tex]\frac{8}{32}[/tex]
B. [tex]\frac{15}{30}[/tex]
C. [tex]\frac{1}{4}[/tex]
D. [tex]\frac{7}{28}[/tex]



Answer :

To multiply the fractions [tex]\(\frac{8}{14}\)[/tex] and [tex]\(\frac{7}{16}\)[/tex], follow these steps:

1. Multiply the Numerators:
Multiply the numerators of the fractions:
[tex]\[ 8 \times 7 = 56 \][/tex]

2. Multiply the Denominators:
Multiply the denominators of the fractions:
[tex]\[ 14 \times 16 = 224 \][/tex]

So, the resulting fraction before simplification is:
[tex]\[ \frac{56}{224} \][/tex]

3. Simplify the Fraction:
To simplify the fraction [tex]\(\frac{56}{224}\)[/tex], you need to find the greatest common divisor (GCD) of 56 and 224. The GCD of 56 and 224 is 56.

4. Divide the Numerator and Denominator by the GCD:
Divide both the numerator and the denominator by their GCD:
[tex]\[ \frac{56 \div 56}{224 \div 56} = \frac{1}{4} \][/tex]

Thus, the simplified form of [tex]\(\frac{8}{14} \cdot \frac{7}{16}\)[/tex] is [tex]\(\frac{1}{4}\)[/tex].

Therefore, the correct answer is:
[tex]\[ \boxed{\frac{1}{4}} \][/tex]