Answer :
Sure, let's go through each problem step by step.
### 1. [tex]\(5 \cdot(60 \div 5-5)-10\)[/tex]
First, perform the division inside the parentheses:
[tex]\[60 \div 5 = 12\][/tex]
Next, subtract 5 from the result:
[tex]\[12 - 5 = 7\][/tex]
Now, multiply by 5:
[tex]\[5 \cdot 7 = 35\][/tex]
Finally, subtract 10:
[tex]\[35 - 10 = 25\][/tex]
So, the result is:
[tex]\[ \boxed{25.0} \][/tex]
### 2. [tex]\(25 - (8-4) \div 6 \cdot 3\)[/tex]
First, perform the subtraction inside the parentheses:
[tex]\[8 - 4 = 4\][/tex]
Next, perform the division:
[tex]\[4 \div 6 \approx 0.6667\][/tex]
Then, multiply by 3:
[tex]\[0.6667 \cdot 3 = 2\][/tex]
Finally, subtract from 25:
[tex]\[25 - 2 = 23\][/tex]
So, the result is:
[tex]\[ \boxed{23.0} \][/tex]
### 3. [tex]\(3 \cdot [(-15) \div (-3) - (-11)]\)[/tex]
First, perform the division inside the brackets:
[tex]\[ -15 \div (-3) = 5 \][/tex]
Next, subtract [tex]\(-11\)[/tex]:
[tex]\[ 5 - (-11) = 5 + 11 = 16 \][/tex]
Now, multiply by 3:
[tex]\[ 3 \cdot 16 = 48 \][/tex]
So, the result is:
[tex]\[ \boxed{48.0} \][/tex]
### 4. [tex]\((2^3 + 11) \cdot 2 - 8 + 11\)[/tex]
First, calculate [tex]\(2^3\)[/tex]:
[tex]\[ 2^3 = 8 \][/tex]
Next, add 11:
[tex]\[ 8 + 11 = 19 \][/tex]
Now, multiply by 2:
[tex]\[ 19 \cdot 2 = 38 \][/tex]
Then, subtract 8:
[tex]\[ 38 - 8 = 30 \][/tex]
Finally, add 11:
[tex]\[ 30 + 11 = 41 \][/tex]
So, the result is:
[tex]\[ \boxed{41} \][/tex]
### 5. [tex]\([3 \cdot (4^3 - 5)] - 8 \cdot 10\)[/tex]
First, calculate [tex]\(4^3\)[/tex]:
[tex]\[ 4^3 = 64 \][/tex]
Next, subtract 5:
[tex]\[ 64 - 5 = 59 \][/tex]
Now, multiply by 3:
[tex]\[ 3 \cdot 59 = 177 \][/tex]
Then, perform the multiplication:
[tex]\[ 8 \cdot 10 = 80 \][/tex]
Finally, subtract 80 from 177:
[tex]\[ 177 - 80 = 97 \][/tex]
So, the result is:
[tex]\[ \boxed{97} \][/tex]
In summary, the results for the given problems are:
1. [tex]\( \boxed{25.0} \)[/tex]
2. [tex]\( \boxed{23.0} \)[/tex]
3. [tex]\( \boxed{48.0} \)[/tex]
4. [tex]\( \boxed{41} \)[/tex]
5. [tex]\( \boxed{97} \)[/tex]
### 1. [tex]\(5 \cdot(60 \div 5-5)-10\)[/tex]
First, perform the division inside the parentheses:
[tex]\[60 \div 5 = 12\][/tex]
Next, subtract 5 from the result:
[tex]\[12 - 5 = 7\][/tex]
Now, multiply by 5:
[tex]\[5 \cdot 7 = 35\][/tex]
Finally, subtract 10:
[tex]\[35 - 10 = 25\][/tex]
So, the result is:
[tex]\[ \boxed{25.0} \][/tex]
### 2. [tex]\(25 - (8-4) \div 6 \cdot 3\)[/tex]
First, perform the subtraction inside the parentheses:
[tex]\[8 - 4 = 4\][/tex]
Next, perform the division:
[tex]\[4 \div 6 \approx 0.6667\][/tex]
Then, multiply by 3:
[tex]\[0.6667 \cdot 3 = 2\][/tex]
Finally, subtract from 25:
[tex]\[25 - 2 = 23\][/tex]
So, the result is:
[tex]\[ \boxed{23.0} \][/tex]
### 3. [tex]\(3 \cdot [(-15) \div (-3) - (-11)]\)[/tex]
First, perform the division inside the brackets:
[tex]\[ -15 \div (-3) = 5 \][/tex]
Next, subtract [tex]\(-11\)[/tex]:
[tex]\[ 5 - (-11) = 5 + 11 = 16 \][/tex]
Now, multiply by 3:
[tex]\[ 3 \cdot 16 = 48 \][/tex]
So, the result is:
[tex]\[ \boxed{48.0} \][/tex]
### 4. [tex]\((2^3 + 11) \cdot 2 - 8 + 11\)[/tex]
First, calculate [tex]\(2^3\)[/tex]:
[tex]\[ 2^3 = 8 \][/tex]
Next, add 11:
[tex]\[ 8 + 11 = 19 \][/tex]
Now, multiply by 2:
[tex]\[ 19 \cdot 2 = 38 \][/tex]
Then, subtract 8:
[tex]\[ 38 - 8 = 30 \][/tex]
Finally, add 11:
[tex]\[ 30 + 11 = 41 \][/tex]
So, the result is:
[tex]\[ \boxed{41} \][/tex]
### 5. [tex]\([3 \cdot (4^3 - 5)] - 8 \cdot 10\)[/tex]
First, calculate [tex]\(4^3\)[/tex]:
[tex]\[ 4^3 = 64 \][/tex]
Next, subtract 5:
[tex]\[ 64 - 5 = 59 \][/tex]
Now, multiply by 3:
[tex]\[ 3 \cdot 59 = 177 \][/tex]
Then, perform the multiplication:
[tex]\[ 8 \cdot 10 = 80 \][/tex]
Finally, subtract 80 from 177:
[tex]\[ 177 - 80 = 97 \][/tex]
So, the result is:
[tex]\[ \boxed{97} \][/tex]
In summary, the results for the given problems are:
1. [tex]\( \boxed{25.0} \)[/tex]
2. [tex]\( \boxed{23.0} \)[/tex]
3. [tex]\( \boxed{48.0} \)[/tex]
4. [tex]\( \boxed{41} \)[/tex]
5. [tex]\( \boxed{97} \)[/tex]