Find the difference of functions [tex]\( s \)[/tex] and [tex]\( r \)[/tex] shown below.

[tex]\[
\begin{array}{l}
r(x) = -x^2 + 3x \\
s(x) = 2x + 1 \\
(s - r)(x) = \square
\end{array}
\][/tex]



Answer :

To find the difference between the functions [tex]\( s(x) \)[/tex] and [tex]\( r(x) \)[/tex], we need to compute [tex]\( (s - r)(x) \)[/tex]. Here are the detailed steps:

1. Express the functions [tex]\( r(x) \)[/tex] and [tex]\( s(x) \)[/tex]:
[tex]\[ r(x) = -x^2 + 3x \][/tex]
[tex]\[ s(x) = 2x + 1 \][/tex]

2. Find the difference [tex]\( (s - r)(x) \)[/tex]:
[tex]\[ (s - r)(x) = s(x) - r(x) \][/tex]

3. Substitute the expressions for [tex]\( s(x) \)[/tex] and [tex]\( r(x) \)[/tex]:
[tex]\[ (s - r)(x) = (2x + 1) - (-x^2 + 3x) \][/tex]

4. Simplify the expression by distributing and combining like terms:
[tex]\[ (s - r)(x) = 2x + 1 + x^2 - 3x \][/tex]
[tex]\[ (s - r)(x) = x^2 + 2x - 3x + 1 \][/tex]
[tex]\[ (s - r)(x) = x^2 - x + 1 \][/tex]

Therefore, the difference [tex]\( (s - r)(x) \)[/tex] is:
[tex]\[ (s - r)(x) = x^2 - x + 1 \][/tex]