Since you know that [tex]\angle 1[/tex] and [tex]\angle 2[/tex] form a linear pair, you can use the definition of a linear pair to write another statement.

\begin{tabular}{|l|l|}
\hline
\multicolumn{1}{|c|}{Statements} & \multicolumn{1}{c|}{Reasons} \\
\hline
1. [tex]\angle 1[/tex] and [tex]\angle 2[/tex] form a linear pair. & 1. Given \\
\hline
2. & 2. If two angles are a linear pair, then they form a straight angle. (definition of linear pair) \\
\hline
\end{tabular}

What statement can be made using the given information and the definition of a linear pair?

A. [tex]\angle 1[/tex] and [tex]\angle 2[/tex] are supplementary.
B. [tex]\angle ABC[/tex] is a straight angle.
C. [tex]\angle ABD[/tex] and [tex]\angle DBC[/tex] form a linear pair.



Answer :

To solve the problem, we need to utilize the given information that [tex]\(\angle 1\)[/tex] and [tex]\(\angle 2\)[/tex] form a linear pair and then apply the definition of a linear pair to derive a new statement.

Let's break it down step-by-step:

1. Given Information:
- Statement: [tex]\(\angle 1\)[/tex] and [tex]\(\angle 2\)[/tex] form a linear pair.
- Reason: Given.

2. Apply the Definition of Linear Pair:
- When two angles form a linear pair, their measures sum up to 180 degrees because they form a straight angle. This is the definition of a linear pair.

Based on this definition, we can derive the following statement:

- Statement: [tex]\(\angle 1\)[/tex] and [tex]\(\angle 2\)[/tex] are supplementary.
- Reason: If two angles are a linear pair, then they form a straight angle (definition of a linear pair).

So, filling in the given information and the reasoning into the table:

[tex]\[ \begin{tabular}{|l|l|} \hline \multicolumn{1}{|c|}{ Statements } & \multicolumn{1}{c|}{ Reasons } \\ \hline 1. $\angle 1$ and $\angle 2$ form a linear pair. & 1. Given \\ \hline 2. $\angle 1$ and $\angle 2$ are supplementary. & \begin{tabular}{l} 2. If two angles are a linear pair, then they form \\ a straight angle. (definition of linear pair)\end{tabular} \\ \hline \end{tabular} \][/tex]

Thus, the statement that can be made using the given information and the definition of linear pair is:
- [tex]\(\angle 1\)[/tex] and [tex]\(\angle 2\)[/tex] are supplementary.