Use the information from statements 3 and 4 to complete Statement 5.

\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{Statements} & \multicolumn{1}{c|}{Reasons} \\
\hline 1. [tex]$\angle 1$[/tex] and [tex]$\angle 2$[/tex] form a linear pair. & 1. Given \\
\hline 2. [tex]$\angle ABC$[/tex] is a straight angle. & \begin{tabular}{l}
2. If two angles are a linear pair, then they form \\
a straight angle. (definition of linear pair)
\end{tabular} \\
\hline 3. [tex]$\angle ABC=180^{\circ}$[/tex] & \begin{tabular}{l}
3. If an angle is a straight angle, then it has a \\
measure of [tex]$180^{\circ}$[/tex]. (definition of straight angle)
\end{tabular} \\
\hline 4. [tex]$m \angle 1 + m \angle 2 = m \angle ABC$[/tex] & 4. Angle Addition Postulate \\
\hline 5. [tex]$m \angle 1 + m \angle 2 = 180^{\circ}$[/tex] & 5. Substitution Property of Equality \\
\hline
\end{tabular}

Enter your answer as the value that correctly fills in the blank in the fifth statement.



Answer :

To determine the value in the blank for statement 5, we'll use the information provided in statements 3 and 4.

From statement 3, we know:
[tex]\[ \angle A B C = 180^\circ \][/tex]

From statement 4, we know:
[tex]\[ m \angle 1 + m \angle 2 = m \angle A B C \][/tex]

By substituting the measure of [tex]\( \angle A B C \)[/tex] from statement 3 into the equation in statement 4, we get:
[tex]\[ m \angle 1 + m \angle 2 = 180^\circ \][/tex]

Thus, the correct answer to fill in the blank for statement 5 is:
[tex]\[ 180^\circ \][/tex]

So, statement 5 should read:
[tex]\[ m \angle 1 + m \angle 2 = 180^\circ \][/tex]