Answer :
To solve the problem [tex]\(\left(6.02 \times 10^{23}\right) \div \left(1.7 \times 10^{21}\right)\)[/tex] and round the answer to the nearest whole number, we can follow these steps:
1. Divide the numbers in scientific notation:
We need to divide [tex]\(6.02 \times 10^{23}\)[/tex] by [tex]\(1.7 \times 10^{21}\)[/tex].
2. Divide the coefficients:
[tex]\[ \frac{6.02}{1.7} \approx 3.54 \][/tex]
3. Subtract the exponents:
When dividing powers of ten, we subtract their exponents:
[tex]\[ 10^{23} \div 10^{21} = 10^{(23 - 21)} = 10^2 \][/tex]
4. Combine the results:
Combining the coefficient result with the powers of ten:
[tex]\[ 3.54 \times 10^2 \][/tex]
5. Convert to standard form and round:
Convert [tex]\(3.54 \times 10^2\)[/tex] to standard form by calculating:
[tex]\[ 3.54 \times 100 = 354 \][/tex]
So the result is 354, which is also rounded to the nearest whole number.
6. Express in scientific notation:
To write 354 in scientific notation:
[tex]\[ 354 = 3.54 \times 10^2 \][/tex]
Final answer is:
[tex]\[ \boxed{354} \][/tex]
In scientific notation, the rounded answer is:
[tex]\[ 3.54 \times 10^2 \][/tex]
1. Divide the numbers in scientific notation:
We need to divide [tex]\(6.02 \times 10^{23}\)[/tex] by [tex]\(1.7 \times 10^{21}\)[/tex].
2. Divide the coefficients:
[tex]\[ \frac{6.02}{1.7} \approx 3.54 \][/tex]
3. Subtract the exponents:
When dividing powers of ten, we subtract their exponents:
[tex]\[ 10^{23} \div 10^{21} = 10^{(23 - 21)} = 10^2 \][/tex]
4. Combine the results:
Combining the coefficient result with the powers of ten:
[tex]\[ 3.54 \times 10^2 \][/tex]
5. Convert to standard form and round:
Convert [tex]\(3.54 \times 10^2\)[/tex] to standard form by calculating:
[tex]\[ 3.54 \times 100 = 354 \][/tex]
So the result is 354, which is also rounded to the nearest whole number.
6. Express in scientific notation:
To write 354 in scientific notation:
[tex]\[ 354 = 3.54 \times 10^2 \][/tex]
Final answer is:
[tex]\[ \boxed{354} \][/tex]
In scientific notation, the rounded answer is:
[tex]\[ 3.54 \times 10^2 \][/tex]