Basic Math Practice

11. [tex]\left(6.02 \times 10^{23}\right) \div \left(1.7 \times 10^{21}\right)[/tex]

Round your answer to the nearest whole number, then write it in scientific notation.



Answer :

To solve the problem [tex]\(\left(6.02 \times 10^{23}\right) \div \left(1.7 \times 10^{21}\right)\)[/tex] and round the answer to the nearest whole number, we can follow these steps:

1. Divide the numbers in scientific notation:
We need to divide [tex]\(6.02 \times 10^{23}\)[/tex] by [tex]\(1.7 \times 10^{21}\)[/tex].

2. Divide the coefficients:
[tex]\[ \frac{6.02}{1.7} \approx 3.54 \][/tex]

3. Subtract the exponents:
When dividing powers of ten, we subtract their exponents:
[tex]\[ 10^{23} \div 10^{21} = 10^{(23 - 21)} = 10^2 \][/tex]

4. Combine the results:
Combining the coefficient result with the powers of ten:
[tex]\[ 3.54 \times 10^2 \][/tex]

5. Convert to standard form and round:
Convert [tex]\(3.54 \times 10^2\)[/tex] to standard form by calculating:
[tex]\[ 3.54 \times 100 = 354 \][/tex]
So the result is 354, which is also rounded to the nearest whole number.

6. Express in scientific notation:
To write 354 in scientific notation:
[tex]\[ 354 = 3.54 \times 10^2 \][/tex]

Final answer is:
[tex]\[ \boxed{354} \][/tex]

In scientific notation, the rounded answer is:
[tex]\[ 3.54 \times 10^2 \][/tex]