Given:
[tex]\[ n(x) = x \][/tex]

Evaluate [tex]\((m \cdot n)(x)\)[/tex] for [tex]\(x = -3\)[/tex].

[tex]\[ (m \cdot n)(-3) = 4 \cdot 9 \cdot 9 \][/tex]

Complete:
[tex]\[ \frac{m}{n}(x), \, x \neq \square \][/tex]

(Note: The given question still contains some ambiguous parts. If "m" is not defined elsewhere in the textbook, additional context may be needed to clarify the problem statement.)



Answer :

To solve this problem, we're going to evaluate [tex]\((m \circ n)(x)\)[/tex] where [tex]\( n(x) = x \)[/tex] for [tex]\( x = -3 \)[/tex] using the provided information about the functions, and then consider the incomplete part of the problem.

### Step-by-Step Solution:

1. Define the functions:
- [tex]\( n(x) = x \)[/tex]
- Assume [tex]\( m(x) = 4x + 9 \)[/tex]

2. Understanding the composition [tex]\((m \circ n)(x)\)[/tex]:
- Composition of functions means to apply one function to the result of another function.
- [tex]\((m \circ n)(x)\)[/tex] is defined as [tex]\( m(n(x)) \)[/tex].

3. Substitute [tex]\( n(x) \)[/tex] into [tex]\( m(x) \)[/tex]:
- Since [tex]\( n(x) = x \)[/tex], we need to compute [tex]\( m(n(-3)) \)[/tex].
- First, evaluate [tex]\( n(-3) \)[/tex]:
[tex]\[ n(-3) = -3 \][/tex]

4. Evaluate [tex]\( m \)[/tex] at [tex]\( n(-3) \)[/tex]:
- Next, apply [tex]\( m \)[/tex] to the result of [tex]\( n(-3) \)[/tex]:
[tex]\[ m(-3) = 4(-3) + 9 \][/tex]
[tex]\[ m(-3) = -12 + 9 \][/tex]
[tex]\[ m(-3) = -3 \][/tex]

Therefore, [tex]\((m \circ n)(-3) = -3\)[/tex].

5. The second part of the question involves [tex]\(\frac{m}{n}(x)\)[/tex]:
- However, the information provided is incomplete and we only have the expression [tex]\(\frac{m}{n}(x), x \neq \ \square \)[/tex].
- To further complete this part, additional information on [tex]\( m(x) \)[/tex] and the constraint on [tex]\( x \)[/tex] is required.

In conclusion, the evaluated result for [tex]\((m \circ n)(-3)\)[/tex] is:
[tex]\[ (m \circ n)(-3) = -3 \][/tex]