\begin{tabular}{|l|l|l|}
\hline
\begin{tabular}{l}
Expresión \\
Algebraica
\end{tabular} & Valor & \begin{tabular}{l}
Valor \\
Numérico
\end{tabular} \\
\hline
[tex]$m+5$[/tex] & [tex]$m=6$[/tex] & \\
\hline
[tex]$2x-1$[/tex] & [tex]$x=8$[/tex] & \\
\hline
[tex]$x^2+4$[/tex] & [tex]$x=5$[/tex] & \\
\hline
[tex]$3x^3-8$[/tex] & [tex]$x=2$[/tex] & \\
\hline
\end{tabular}



Answer :

Let's go through each algebraic expression step by step and determine the numerical values given the specific values for the variables:

1. Expression [tex]\( m + 5 \)[/tex] with [tex]\( m = 6 \)[/tex]:
- To find the value of this expression, simply add 5 to the given value of [tex]\( m \)[/tex].
- Calculation: [tex]\( 6 + 5 = 11 \)[/tex]
- Therefore, [tex]\( m + 5 = 11 \)[/tex].

2. Expression [tex]\( 2x - 1 \)[/tex] with [tex]\( x = 8 \)[/tex]:
- For this expression, multiply the given value of [tex]\( x \)[/tex] by 2, and then subtract 1.
- Calculation: [tex]\( 2 \times 8 = 16 \)[/tex] and [tex]\( 16 - 1 = 15 \)[/tex]
- Therefore, [tex]\( 2x - 1 = 15 \)[/tex].

3. Expression [tex]\( x^2 + 4 \)[/tex] with [tex]\( x = 5 \)[/tex]:
- First, square the given value of [tex]\( x \)[/tex], and then add 4.
- Calculation: [tex]\( 5^2 = 25 \)[/tex] and [tex]\( 25 + 4 = 29 \)[/tex]
- Therefore, [tex]\( x^2 + 4 = 29 \)[/tex].

4. Expression [tex]\( 3x^3 - 8 \)[/tex] with [tex]\( x = 2 \)[/tex]:
- Cube the given value of [tex]\( x \)[/tex], multiply by 3, and then subtract 8.
- Calculation: [tex]\( 2^3 = 8 \)[/tex], [tex]\( 3 \times 8 = 24 \)[/tex], and [tex]\( 24 - 8 = 16 \)[/tex]
- Therefore, [tex]\( 3x^3 - 8 = 16 \)[/tex].

So, here are the results for each expression:
- [tex]\( m + 5 = 11 \)[/tex]
- [tex]\( 2x - 1 = 15 \)[/tex]
- [tex]\( x^2 + 4 = 29 \)[/tex]
- [tex]\( 3x^3 - 8 = 16 \)[/tex]

The final numerical values obtained are: [tex]\( 11 \)[/tex], [tex]\( 15 \)[/tex], [tex]\( 29 \)[/tex], and [tex]\( 16 \)[/tex].