Answer :
Let's solve these two expressions step by step:
1. Evaluate [tex]\(-24 \div 4\)[/tex]:
- Start with the division operation, which involves dividing [tex]\(-24\)[/tex] by [tex]\(4\)[/tex].
- When you divide a negative number by a positive number, the result will be negative.
- So, [tex]\(-24\)[/tex] divided by [tex]\(4\)[/tex] gives [tex]\(-6\)[/tex].
Therefore,
[tex]\[ -24 \div 4 = -6 \][/tex]
2. Evaluate [tex]\(-7 \times (-3)\)[/tex]:
- Start with the multiplication operation, which involves multiplying [tex]\(-7\)[/tex] by [tex]\(-3\)[/tex].
- When you multiply two negative numbers, the result will be positive.
- So, [tex]\(-7\)[/tex] multiplied by [tex]\(-3\)[/tex] gives [tex]\(21\)[/tex].
Therefore,
[tex]\[ -7 \times (-3) = 21 \][/tex]
Thus, the evaluated results are:
[tex]\[ \begin{array}{r} -24 \div 4 = -6 \\ -7 \times(-3) = 21 \end{array} \][/tex]
1. Evaluate [tex]\(-24 \div 4\)[/tex]:
- Start with the division operation, which involves dividing [tex]\(-24\)[/tex] by [tex]\(4\)[/tex].
- When you divide a negative number by a positive number, the result will be negative.
- So, [tex]\(-24\)[/tex] divided by [tex]\(4\)[/tex] gives [tex]\(-6\)[/tex].
Therefore,
[tex]\[ -24 \div 4 = -6 \][/tex]
2. Evaluate [tex]\(-7 \times (-3)\)[/tex]:
- Start with the multiplication operation, which involves multiplying [tex]\(-7\)[/tex] by [tex]\(-3\)[/tex].
- When you multiply two negative numbers, the result will be positive.
- So, [tex]\(-7\)[/tex] multiplied by [tex]\(-3\)[/tex] gives [tex]\(21\)[/tex].
Therefore,
[tex]\[ -7 \times (-3) = 21 \][/tex]
Thus, the evaluated results are:
[tex]\[ \begin{array}{r} -24 \div 4 = -6 \\ -7 \times(-3) = 21 \end{array} \][/tex]