Select the correct answer from each drop-down menu.

The graph of the function [tex]f(x)=\frac{5}{4} \sin (x)+1[/tex] is shown. What are the key features of this function?

The maximum value of the function is [tex]\square[/tex].

The minimum value of the function is [tex]\square[/tex].

On the interval [tex]\left(0, \frac{\pi}{2}\right)[/tex], the function is [tex]\square[/tex].

The range of the function is [tex]\square[/tex].



Answer :

Alright, let's analyze the function [tex]\( f(x) = \frac{5}{4} \sin(x) + 1 \)[/tex] to determine its key features.

1. Maximum value of the function:
The sine function [tex]\(\sin(x)\)[/tex] has a maximum value of 1. Multiplying this by [tex]\(\frac{5}{4}\)[/tex] and then adding 1 gives us the maximum value:
[tex]\[ \frac{5}{4} \cdot 1 + 1 = \frac{5}{4} + 1 = \frac{5}{4} + \frac{4}{4} = \frac{9}{4} = 2.25 \][/tex]
So, the maximum value of the function is [tex]\(\boxed{2.25}\)[/tex].

2. Minimum value of the function:
The sine function [tex]\(\sin(x)\)[/tex] has a minimum value of -1. Multiplying this by [tex]\(\frac{5}{4}\)[/tex] and then adding 1 gives us the minimum value:
[tex]\[ \frac{5}{4} \cdot (-1) + 1 = -\frac{5}{4} + 1 = -\frac{5}{4} + \frac{4}{4} = -\frac{5}{4} + \frac{4}{4} = -\frac{1}{4} = -0.25 \][/tex]
So, the minimum value of the function is [tex]\(\boxed{-0.25}\)[/tex].

3. Behavior of the function on the interval [tex]\(\left(0, \frac{\pi}{2}\right)\)[/tex]:
On the interval [tex]\(\left(0, \frac{\pi}{2}\right)\)[/tex], the sine function [tex]\(\sin(x)\)[/tex] increases from 0 to 1. Therefore, since [tex]\(\sin(x)\)[/tex] is increasing, [tex]\( f(x) = \frac{5}{4} \sin(x) + 1 \)[/tex] is also increasing on this interval.
So, on the interval [tex]\(\left(0, \frac{\pi}{2}\right)\)[/tex], the function is [tex]\(\boxed{\text{increasing}}\)[/tex].

4. Range of the function:
Combining the maximum and minimum values, the range of the function [tex]\( f(x) \)[/tex] is from -0.25 to 2.25. Therefore, the range can be written as:
[tex]\[ \boxed{(-0.25, 2.25)} \][/tex]

Summarizing, the key features are:

- The maximum value of the function is [tex]\(\boxed{2.25}\)[/tex].
- The minimum value of the function is [tex]\(\boxed{-0.25}\)[/tex].
- On the interval [tex]\(\left(0, \frac{\pi}{2}\right)\)[/tex], the function is [tex]\(\boxed{\text{increasing}}\)[/tex].
- The range of the function is [tex]\(\boxed{(-0.25, 2.25)}\)[/tex].