To evaluate [tex]\(\left(\frac{m}{n}\right)(x)\)[/tex] for [tex]\(x = -3\)[/tex], we can follow these steps:
1. Identify the values of [tex]\(m\)[/tex] and [tex]\(n\)[/tex].
2. Substitute [tex]\(x\)[/tex] with [tex]\(-3\)[/tex].
Given:
- [tex]\(m\)[/tex] is assumed to be [tex]\(1\)[/tex].
- [tex]\(n\)[/tex] is assumed to be [tex]\(1\)[/tex].
Now, let's calculate:
[tex]\[
\left(\frac{m}{n}\right)(x) = \left(\frac{1}{1}\right)(x).
\][/tex]
This simplifies to:
[tex]\[
1 \cdot x = x.
\][/tex]
Substituting [tex]\(x = -3\)[/tex], we get:
[tex]\[
1 \cdot (-3) = -3.
\][/tex]
Therefore,
[tex]\[
\frac{m}{n}(-3) = -3.
\][/tex]
So, the final answer is:
[tex]\[
\boxed{-3}.
\][/tex]