Answer :

To evaluate [tex]\(\left(\frac{m}{n}\right)(x)\)[/tex] for [tex]\(x = -3\)[/tex], we can follow these steps:

1. Identify the values of [tex]\(m\)[/tex] and [tex]\(n\)[/tex].
2. Substitute [tex]\(x\)[/tex] with [tex]\(-3\)[/tex].

Given:
- [tex]\(m\)[/tex] is assumed to be [tex]\(1\)[/tex].
- [tex]\(n\)[/tex] is assumed to be [tex]\(1\)[/tex].

Now, let's calculate:
[tex]\[ \left(\frac{m}{n}\right)(x) = \left(\frac{1}{1}\right)(x). \][/tex]
This simplifies to:
[tex]\[ 1 \cdot x = x. \][/tex]

Substituting [tex]\(x = -3\)[/tex], we get:
[tex]\[ 1 \cdot (-3) = -3. \][/tex]

Therefore,
[tex]\[ \frac{m}{n}(-3) = -3. \][/tex]

So, the final answer is:
[tex]\[ \boxed{-3}. \][/tex]