Multiply and divide as indicated.

[tex]\[ \frac{x^2 + x - 30}{x^2 + x - 42} \cdot \frac{x^2 + 13x + 42}{x^2 - x - 20} \div \frac{x + 7}{x^2 + 11x + 28} \][/tex]



Answer :

Certainly! Let's solve the given expression step-by-step:

We need to evaluate the following expression:
[tex]\[ \frac{x^2+x-30}{x^2+x-42} \cdot \frac{x^2+13x+42}{x^2-x-20} \div \frac{x+7}{x^2+11x+28} \][/tex]

To simplify, we first rewrite the division as multiplication by the reciprocal:
[tex]\[ \frac{x^2+x-30}{x^2+x-42} \cdot \frac{x^2+13x+42}{x^2-x-20} \cdot \frac{x^2+11x+28}{x+7} \][/tex]

Let's simplify each polynomial expression by factoring them wherever possible.

1. Factor [tex]\(x^2 + x - 30\)[/tex]:
[tex]\[ x^2 + x - 30 = (x + 6)(x - 5) \][/tex]

2. Factor [tex]\(x^2 + x - 42\)[/tex]:
[tex]\[ x^2 + x - 42 = (x + 7)(x - 6) \][/tex]

3. Factor [tex]\(x^2 + 13x + 42\)[/tex]:
[tex]\[ x^2 + 13x + 42 = (x + 6)(x + 7) \][/tex]

4. Factor [tex]\(x^2 - x - 20\)[/tex]:
[tex]\[ x^2 - x - 20 = (x - 5)(x + 4) \][/tex]

5. Factor [tex]\(x^2 + 11x + 28\)[/tex]:
[tex]\[ x^2 + 11x + 28 = (x + 7)(x + 4) \][/tex]

With these factorizations, the expression becomes:
[tex]\[ \frac{(x + 6)(x - 5)}{(x + 7)(x - 6)} \cdot \frac{(x + 6)(x + 7)}{(x - 5)(x + 4)} \cdot \frac{(x + 7)(x + 4)}{x + 7} \][/tex]

Next, let's simplify the expression by canceling common factors in the numerator and the denominator:
- The factor [tex]\( (x+7) \)[/tex] appears in the numerator and denominator.
- The factor [tex]\( (x+6) \)[/tex] appears in the numerator and denominator.
- The factor [tex]\( (x-5) \)[/tex] appears in the numerator and denominator.
- The factor [tex]\( (x+4) \)[/tex] appears in the numerator and denominator.

After canceling the common factors, the expression simplifies to:
[tex]\[ \frac{(x + 6)(x \cancel{- 5})}{(x + 7)(x - 6)} \cdot \frac{(x \cancel{+ 6})(x \cancel{+ 7})}{(\cancel{x - 5})(x + 4)} \cdot \frac{\cancel{(x + 7)}(x + 4)}{\cancel{x + 7}} \][/tex]

We are left with:
[tex]\[ \frac{x^2 + 12x + 36}{x - 6} \][/tex]

Thus, the simplified form of the given expression is:
[tex]\[ \boxed{\frac{x^2 + 12x + 36}{x - 6}} \][/tex]