Subtract the matrices.

[tex]\[
\left[\begin{array}{cc} 5 & -1 \\ 2 & 4 \end{array}\right] - \left[\begin{array}{cc} 2 & 6 \\ -3 & -4 \end{array}\right]
\][/tex]



Answer :

To subtract the given matrices, we perform element-wise subtraction between the corresponding elements of the two matrices. Let's go through this step-by-step:

Given matrices:
[tex]\[ A = \begin{bmatrix} 5 & -1 \\ 2 & 4 \end{bmatrix} \][/tex]
[tex]\[ B = \begin{bmatrix} 2 & 6 \\ -3 & -4 \end{bmatrix} \][/tex]

We need to find the matrix [tex]\( C = A - B \)[/tex].

To do that, subtract each element of matrix [tex]\( B \)[/tex] from the corresponding element of matrix [tex]\( A \)[/tex]:

1. Top-left element:
[tex]\[ c_{11} = a_{11} - b_{11} = 5 - 2 = 3 \][/tex]

2. Top-right element:
[tex]\[ c_{12} = a_{12} - b_{12} = -1 - 6 = -7 \][/tex]

3. Bottom-left element:
[tex]\[ c_{21} = a_{21} - b_{21} = 2 - (-3) = 2 + 3 = 5 \][/tex]

4. Bottom-right element:
[tex]\[ c_{22} = a_{22} - b_{22} = 4 - (-4) = 4 + 4 = 8 \][/tex]

Combining these results, we get the resulting matrix [tex]\( C \)[/tex]:

[tex]\[ C = \begin{bmatrix} 3 & -7 \\ 5 & 8 \end{bmatrix} \][/tex]

Therefore, the resulting matrix after subtracting matrix [tex]\( B \)[/tex] from matrix [tex]\( A \)[/tex] is:
[tex]\[ \begin{bmatrix} 3 & -7 \\ 5 & 8 \end{bmatrix} \][/tex]

Other Questions