Find the rate of change.

[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $y$ \\
\hline
-2 & 17 \\
\hline
-1 & 13 \\
\hline
1 & 5 \\
\hline
2 & 1 \\
\hline
3 & -3 \\
\hline
\end{tabular}
\][/tex]



Answer :

To determine the rate of change between the given points, we need to follow a few steps carefully. Below is a detailed, step-by-step solution:

1. List the given points:
[tex]\[ (-2, 17), (-1, 13), (1, 5), (2, 1), (3, -3) \][/tex]

2. Determine the change in [tex]\( x \)[/tex] and the change in [tex]\( y \)[/tex] between the first and last points:
- The [tex]\( x \)[/tex]-values are [tex]\( -2 \)[/tex] and [tex]\( 3 \)[/tex].
- The [tex]\( y \)[/tex]-values are [tex]\( 17 \)[/tex] and [tex]\( -3 \)[/tex].

3. Calculate the change in [tex]\( x \)[/tex] (Δx):
[tex]\[ \Delta x = x_{\text{last}} - x_{\text{first}} = 3 - (-2) = 3 + 2 = 5 \][/tex]

4. Calculate the change in [tex]\( y \)[/tex] (Δy):
[tex]\[ \Delta y = y_{\text{last}} - y_{\text{first}} = -3 - 17 = -20 \][/tex]

5. Calculate the rate of change:
The rate of change (or the slope) is found by dividing the change in [tex]\( y \)[/tex] by the change in [tex]\( x \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{\Delta y}{\Delta x} = \frac{-20}{5} = -4.0 \][/tex]

6. Conclusion:
Thus, the rate of change between the given points is [tex]\( -4.0 \)[/tex].