Complete the table of inputs and outputs for the given function:

[tex]\[ g(x) = -4x - 1 \][/tex]

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$g(x)$[/tex] \\
\hline
[tex]$\square$[/tex] & 7 \\
\hline
0 & [tex]$\square$[/tex] \\
\hline
-1 & -5 \\
\hline
2 & [tex]$\square$[/tex] \\
\hline
\end{tabular}



Answer :

Certainly! Let's complete the table step-by-step.

1. Given [tex]\( g(x) = 7 \)[/tex]:

Start with the equation [tex]\( g(x) = -4x - 1 \)[/tex].

We need to solve for [tex]\( x \)[/tex]:
[tex]\[ 7 = -4x - 1 \][/tex]
Add 1 to both sides:
[tex]\[ 8 = -4x \][/tex]
Divide both sides by -4:
[tex]\[ x = -2 \][/tex]
So, when [tex]\( g(x) = 7 \)[/tex], [tex]\( x = -2 \)[/tex].

2. Given [tex]\( x = 0 \)[/tex]:

We need to find [tex]\( g(0) \)[/tex]:
[tex]\[ g(0) = -4(0) - 1 = -1 \][/tex]
So, when [tex]\( x = 0 \)[/tex], [tex]\( g(x) = -1 \)[/tex].

3. Given [tex]\( x = -1 \)[/tex]:

We need to find [tex]\( g(-1) \)[/tex]:
[tex]\[ g(-1) = -4(-1) - 1 = 4 - 1 = 3 \][/tex]
So, when [tex]\( x = -1 \)[/tex], [tex]\( g(x) = 3 \)[/tex].

4. The row with an empty [tex]\( x \)[/tex] value:

Since we are given no additional information for this row, we cannot determine the value of [tex]\( x \)[/tex] or [tex]\( g(x) \)[/tex]. This row will remain incomplete.

Now, let's complete the table with the values we have found:

[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $g(x)$ \\ \hline -2 & 7 \\ \hline 0 & -1 \\ \hline -1 & 3 \\ \hline & \\ \hline \end{tabular} \][/tex]