Complete the standard multiplication algorithm for [tex]5.2 \times 0.46[/tex], including any "carried," or regrouped digits, if necessary.

[tex]\[
\begin{array}{r}
& 5.2 \\
\times & 0.46 \\
\hline
& 312 \quad \text{(6 * 5.2)} \\
208 \quad \text{(0.4 * 5.2)} \\
\hline
2.392
\end{array}
\][/tex]



Answer :

Sure, let's perform the multiplication of [tex]\(5.2 \times 0.46\)[/tex] in a structured manner.

Step 1: Break down the numbers.

First, let's recognize that [tex]\(0.46\)[/tex] can be decomposed into [tex]\(0.4 + 0.06\)[/tex]. This helps us to handle the multiplication in two smaller, simpler steps.

Step 2: Multiply [tex]\(5.2\)[/tex] by [tex]\(0.4\)[/tex].

[tex]\[ 5.2 \times 0.4 = 2.08 \][/tex]

Step 3: Multiply [tex]\(5.2\)[/tex] by [tex]\(0.06\)[/tex].

[tex]\[ 5.2 \times 0.06 = 0.312 \][/tex]

Step 4: Sum the intermediate results to get the final result.

[tex]\[ 2.08 + 0.312 = 2.392 \][/tex]

Summary:
- [tex]\(5.2 \times 0.4 = 2.08\)[/tex]
- [tex]\(5.2 \times 0.06 = 0.312\)[/tex]
- Adding them together: [tex]\(2.08 + 0.312 = 2.392\)[/tex]

So, the completed standard multiplication algorithm for [tex]\(5.2 \times 0.46\)[/tex] gives us [tex]\(2.392\)[/tex].