Sure, let's perform the multiplication of [tex]\(5.2 \times 0.46\)[/tex] in a structured manner.
Step 1: Break down the numbers.
First, let's recognize that [tex]\(0.46\)[/tex] can be decomposed into [tex]\(0.4 + 0.06\)[/tex]. This helps us to handle the multiplication in two smaller, simpler steps.
Step 2: Multiply [tex]\(5.2\)[/tex] by [tex]\(0.4\)[/tex].
[tex]\[ 5.2 \times 0.4 = 2.08 \][/tex]
Step 3: Multiply [tex]\(5.2\)[/tex] by [tex]\(0.06\)[/tex].
[tex]\[ 5.2 \times 0.06 = 0.312 \][/tex]
Step 4: Sum the intermediate results to get the final result.
[tex]\[ 2.08 + 0.312 = 2.392 \][/tex]
Summary:
- [tex]\(5.2 \times 0.4 = 2.08\)[/tex]
- [tex]\(5.2 \times 0.06 = 0.312\)[/tex]
- Adding them together: [tex]\(2.08 + 0.312 = 2.392\)[/tex]
So, the completed standard multiplication algorithm for [tex]\(5.2 \times 0.46\)[/tex] gives us [tex]\(2.392\)[/tex].