Complete the standard multiplication algorithm for [tex]$59 \times 8.1$[/tex], including any "carried," or regrouped digits, if necessary.



Answer :

To complete the standard multiplication algorithm for [tex]\( 59 \times 8.1 \)[/tex], we can follow these detailed steps:

1. Ignore the decimal for now: First, treat [tex]\( 8.1 \)[/tex] as [tex]\( 81 \)[/tex] (just imagining it as a whole number). We'll account for the decimal place at the end.

2. Multiply the numbers as if they were integers:

[tex]\[ 59 \times 81 \][/tex]

3. Break down the multiplication using the distributive property:

[tex]\[ 59 \times 81 = 59 \times (80 + 1) \][/tex]

4. Execute the multiplications separately:

[tex]\[ 59 \times 80 = 59 \times (8 \times 10) = (59 \times 8) \times 10 \][/tex]

Calculate [tex]\( 59 \times 8 \)[/tex]:

[tex]\[ 59 \times 8 = 472 \][/tex]

Then multiply by 10:

[tex]\[ 472 \times 10 = 4720 \][/tex]

Now, calculate [tex]\( 59 \times 1 \)[/tex]:

[tex]\[ 59 \times 1 = 59 \][/tex]

5. Add these partial products:

[tex]\[ 4720 + 59 = 4779 \][/tex]

6. Adjust for the decimal point: Since we initially multiplied by [tex]\( 81 \)[/tex] instead of [tex]\( 8.1 \)[/tex], we must adjust the final result. [tex]\( 8.1 \)[/tex] has one decimal place, so the final result must also have one decimal place.

Therefore,

[tex]\[ 4779 \div 10 = 477.9 \][/tex]

So, [tex]\( 59 \times 8.1 = 477.9 \)[/tex].