Answer :
To find the height of a rectangular prism given its length, width, and volume, we can use the formula for the volume of a rectangular prism:
[tex]\[ \text{Volume} = \text{length} \times \text{width} \times \text{height} \][/tex]
We are given:
- Length ([tex]\( l \)[/tex]) = 4
- Width ([tex]\( w \)[/tex]) = 5
- Volume ([tex]\( V \)[/tex]) = 40
We need to find the height ([tex]\( h \)[/tex]) of the rectangular prism. Rearrange the volume formula to solve for height:
[tex]\[ \text{height} = \frac{\text{Volume}}{\text{length} \times \text{width}} \][/tex]
Substitute in the given values:
[tex]\[ h = \frac{40}{4 \times 5} \][/tex]
First, calculate the denominator:
[tex]\[ 4 \times 5 = 20 \][/tex]
Now, divide the volume by this product:
[tex]\[ h = \frac{40}{20} \][/tex]
[tex]\[ h = 2.0 \][/tex]
Therefore, the height of the rectangular prism is [tex]\( 2.0 \)[/tex].
[tex]\[ \text{Volume} = \text{length} \times \text{width} \times \text{height} \][/tex]
We are given:
- Length ([tex]\( l \)[/tex]) = 4
- Width ([tex]\( w \)[/tex]) = 5
- Volume ([tex]\( V \)[/tex]) = 40
We need to find the height ([tex]\( h \)[/tex]) of the rectangular prism. Rearrange the volume formula to solve for height:
[tex]\[ \text{height} = \frac{\text{Volume}}{\text{length} \times \text{width}} \][/tex]
Substitute in the given values:
[tex]\[ h = \frac{40}{4 \times 5} \][/tex]
First, calculate the denominator:
[tex]\[ 4 \times 5 = 20 \][/tex]
Now, divide the volume by this product:
[tex]\[ h = \frac{40}{20} \][/tex]
[tex]\[ h = 2.0 \][/tex]
Therefore, the height of the rectangular prism is [tex]\( 2.0 \)[/tex].