Answer :
To solve this translation problem, let's apply the translation to each vertex of the triangle step by step.
We start with the original vertices:
- [tex]\( A(-2, -1) \)[/tex]
- [tex]\( B(1, 3) \)[/tex]
- [tex]\( C(2, -4) \)[/tex]
The translation specifies moving the points 3 units to the right and 1 unit up.
### Translation of Point [tex]\(A\)[/tex]:
- Original coordinates: [tex]\( A(-2, -1) \)[/tex]
- Translate 3 units to the right: [tex]\( -2 + 3 = 1 \)[/tex]
- Translate 1 unit up: [tex]\( -1 + 1 = 0 \)[/tex]
- New coordinates: [tex]\( A'(1, 0) \)[/tex]
### Translation of Point [tex]\(B\)[/tex]:
- Original coordinates: [tex]\( B(1, 3) \)[/tex]
- Translate 3 units to the right: [tex]\( 1 + 3 = 4 \)[/tex]
- Translate 1 unit up: [tex]\( 3 + 1 = 4 \)[/tex]
- New coordinates: [tex]\( B'(4, 4) \)[/tex]
### Translation of Point [tex]\(C\)[/tex]:
- Original coordinates: [tex]\( C(2, -4) \)[/tex]
- Translate 3 units to the right: [tex]\( 2 + 3 = 5 \)[/tex]
- Translate 1 unit up: [tex]\( -4 + 1 = -3 \)[/tex]
- New coordinates: [tex]\( C'(5, -3) \)[/tex]
So, the new coordinates of the vertices of the triangle after the translation are:
- [tex]\( A'(1, 0) \)[/tex]
- [tex]\( B'(4, 4) \)[/tex]
- [tex]\( C'(5, -3) \)[/tex]
The correct answer is:
[tex]\[ A'(1, 0), B'(4, 4), C'(5, -3) \][/tex]
Therefore, the correct option from the given choices is:
[tex]\[ \boxed{A'(1, 0), B'(4, 4), C'(5, -3)} \][/tex]
We start with the original vertices:
- [tex]\( A(-2, -1) \)[/tex]
- [tex]\( B(1, 3) \)[/tex]
- [tex]\( C(2, -4) \)[/tex]
The translation specifies moving the points 3 units to the right and 1 unit up.
### Translation of Point [tex]\(A\)[/tex]:
- Original coordinates: [tex]\( A(-2, -1) \)[/tex]
- Translate 3 units to the right: [tex]\( -2 + 3 = 1 \)[/tex]
- Translate 1 unit up: [tex]\( -1 + 1 = 0 \)[/tex]
- New coordinates: [tex]\( A'(1, 0) \)[/tex]
### Translation of Point [tex]\(B\)[/tex]:
- Original coordinates: [tex]\( B(1, 3) \)[/tex]
- Translate 3 units to the right: [tex]\( 1 + 3 = 4 \)[/tex]
- Translate 1 unit up: [tex]\( 3 + 1 = 4 \)[/tex]
- New coordinates: [tex]\( B'(4, 4) \)[/tex]
### Translation of Point [tex]\(C\)[/tex]:
- Original coordinates: [tex]\( C(2, -4) \)[/tex]
- Translate 3 units to the right: [tex]\( 2 + 3 = 5 \)[/tex]
- Translate 1 unit up: [tex]\( -4 + 1 = -3 \)[/tex]
- New coordinates: [tex]\( C'(5, -3) \)[/tex]
So, the new coordinates of the vertices of the triangle after the translation are:
- [tex]\( A'(1, 0) \)[/tex]
- [tex]\( B'(4, 4) \)[/tex]
- [tex]\( C'(5, -3) \)[/tex]
The correct answer is:
[tex]\[ A'(1, 0), B'(4, 4), C'(5, -3) \][/tex]
Therefore, the correct option from the given choices is:
[tex]\[ \boxed{A'(1, 0), B'(4, 4), C'(5, -3)} \][/tex]