Subtracting [tex]\( u \)[/tex] from both sides of the equation results in: [tex]\( v - u = a t \)[/tex]

Solve this equation for [tex]\( t \)[/tex].

A. [tex]\( t = \frac{(v - u)}{a} \)[/tex]
B. [tex]\( t = (v - u) - a \)[/tex]
C. [tex]\( t = (v - u) + a \)[/tex]
D. [tex]\( t = a (v - u) \)[/tex]



Answer :

To solve the equation [tex]\( v - u = a \cdot t \)[/tex] for [tex]\( t \)[/tex], follow these steps:

1. Understand the given equation:
[tex]\[ v - u = a \cdot t \][/tex]
This is a linear equation where [tex]\( v \)[/tex] and [tex]\( u \)[/tex] are constants, and we want to solve for [tex]\( t \)[/tex].

2. Isolate [tex]\( t \)[/tex]:
To solve for [tex]\( t \)[/tex], we need to get [tex]\( t \)[/tex] by itself on one side of the equation. Since [tex]\( t \)[/tex] is being multiplied by [tex]\( a \)[/tex], we can isolate [tex]\( t \)[/tex] by dividing both sides of the equation by [tex]\( a \)[/tex].

3. Divide both sides by [tex]\( a \)[/tex]:
[tex]\[ \frac{v - u}{a} = \frac{a \cdot t}{a} \][/tex]
The [tex]\( a \)[/tex] on the right-hand side cancels out, leaving:
[tex]\[ \frac{v - u}{a} = t \][/tex]

4. Write the final solution:
[tex]\[ t = \frac{v - u}{a} \][/tex]

Therefore, the correct answer is:
[tex]\[ t = \frac{v - u}{a} \][/tex]

This shows the step-by-step process to isolate [tex]\( t \)[/tex] and solve the equation.