Describe the steps you would take to solve the given literal equation for [tex]m[/tex] as shown.

[tex]\[
\begin{array}{l}
t=2 \pi \sqrt{\frac{m}{k}} \\
m=\frac{k t^2}{4 \pi^2}
\end{array}
\][/tex]



Answer :

To solve the given equation [tex]\( t = 2 \pi \sqrt{\frac{m}{k}} \)[/tex] for [tex]\( m \)[/tex], follow these steps:

1. Isolate the square root term:
Start by isolating the term involving [tex]\( m \)[/tex]. Divide both sides of the equation by [tex]\( 2 \pi \)[/tex]:
[tex]\[ \frac{t}{2 \pi} = \sqrt{\frac{m}{k}} \][/tex]

2. Eliminate the square root:
To remove the square root, square both sides of the equation:
[tex]\[ \left(\frac{t}{2 \pi}\right)^2 = \left(\sqrt{\frac{m}{k}}\right)^2 \][/tex]
This simplifies to:
[tex]\[ \frac{t^2}{(2 \pi)^2} = \frac{m}{k} \][/tex]

3. Solve for [tex]\( m \)[/tex]:
Isolate [tex]\( m \)[/tex] by multiplying both sides of the equation by [tex]\( k \)[/tex]:
[tex]\[ m = k \cdot \frac{t^2}{(2 \pi)^2} \][/tex]

4. Simplify the solution:
Simplify the denominator:
[tex]\[ (2 \pi)^2 = 4 \pi^2 \][/tex]
Thus, the equation becomes:
[tex]\[ m = \frac{k t^2}{4 \pi^2} \][/tex]

Therefore, the solution to the equation [tex]\( t = 2 \pi \sqrt{\frac{m}{k}} \)[/tex] for [tex]\( m \)[/tex] is:
[tex]\[ m = \frac{k t^2}{4 \pi^2} \][/tex]