Study the example on the right to help you complete the problem below.

Solve the equation [tex]$A = \left(\frac{1}{2}\right) b h$[/tex] for [tex]$h$[/tex].

A. [tex]$h = \left(\frac{1}{2}\right) A b$[/tex]
B. [tex][tex]$h = 2 A / b$[/tex][/tex]
C. [tex]$h = 2 b / A$[/tex]
D. [tex]$h = \left(\frac{1}{2}\right) b / A$[/tex]



Answer :

To solve the equation [tex]\( A = \left(\frac{1}{2}\right) b h \)[/tex] for [tex]\( h \)[/tex], follow these detailed steps:

1. Starting Equation:
[tex]\[ A = \left(\frac{1}{2}\right) b h \][/tex]

2. Clear the Fraction:
To eliminate the fraction, multiply both sides of the equation by 2:
[tex]\[ 2A = b h \][/tex]

3. Isolate [tex]\( h \)[/tex]:
To solve for [tex]\( h \)[/tex], divide both sides of the equation by [tex]\( b \)[/tex]:
[tex]\[ h = \frac{2A}{b} \][/tex]

Hence, the solved equation for [tex]\( h \)[/tex] is:
[tex]\[ h = \frac{2A}{b} \][/tex]

Among the provided options, the correct option is:
[tex]\[ h = \frac{2A}{b} \][/tex]