Use the distributive property to expand the expression:

[tex]\[
(x+8)(x-3)
\][/tex]

[tex]\[
x^2 + \square x + \square
\][/tex]



Answer :

To expand the expression [tex]\((x+8)(x-3)\)[/tex] using the distributive property, follow these steps:

1. Apply the distributive property (FOIL Method):
- First: Multiply the first terms in each binomial.
- Outer: Multiply the outer terms.
- Inner: Multiply the inner terms.
- Last: Multiply the last terms in each binomial.

Let's break it down:

First: Multiply the first terms in each binomial:
[tex]\[ x \times x = x^2 \][/tex]

Outer: Multiply the outer terms:
[tex]\[ x \times -3 = -3x \][/tex]

Inner: Multiply the inner terms:
[tex]\[ 8 \times x = 8x \][/tex]

Last: Multiply the last terms:
[tex]\[ 8 \times -3 = -24 \][/tex]

2. Combine like terms:
- Combine the [tex]\(x \)[/tex] terms: [tex]\(-3x + 8x = 5x\)[/tex]
- The constant term is [tex]\(-24\)[/tex]

So, the expanded form of [tex]\((x+8)(x-3)\)[/tex] is:
[tex]\[ x^2 + 5x - 24 \][/tex]

Thus, the completed expression is:
[tex]\[ x^2 + 5x - 24 \][/tex]