Answer :

Let's evaluate the given function [tex]\( f(t) = t^2 + 4t \)[/tex] at [tex]\( t = -8 \)[/tex].

Step-by-step solution:

1. Start with the function [tex]\( f(t) = t^2 + 4t \)[/tex].
2. Substitute [tex]\( t = -8 \)[/tex] into the function.

So, we need to calculate:
[tex]\[ f(-8) = (-8)^2 + 4(-8) \][/tex]

3. Evaluate the square term [tex]\((-8)^2\)[/tex]:
[tex]\[ (-8)^2 = 64 \][/tex]

4. Evaluate the product [tex]\( 4(-8) \)[/tex]:
[tex]\[ 4(-8) = -32 \][/tex]

5. Add the two results together:
[tex]\[ 64 + (-32) = 32 \][/tex]

Therefore, the value of [tex]\( f(-8) \)[/tex] is
[tex]\[ f(-8) = 32 \][/tex]