Solve [tex]\frac{2x-1}{y}=\frac{w+2}{2z}[/tex] for [tex]w[/tex].

A. [tex]w=\frac{4xz-1}{y}-2[/tex]
B. [tex]w=\frac{4xz-2z}{y}[/tex]
C. [tex]w=\frac{xz-z}{y}-2[/tex]
D. [tex]w=\frac{4xz-2z}{y}-2[/tex]



Answer :

To solve the equation [tex]\(\frac{2x - 1}{y} = \frac{w + 2}{2z}\)[/tex] for [tex]\(w\)[/tex], we will perform a systematic algebraic manipulation:

1. Start with the given equation:
[tex]\[ \frac{2x - 1}{y} = \frac{w + 2}{2z} \][/tex]

2. Cross-multiply to eliminate the fractions:
[tex]\[ (2x - 1) \cdot 2z = (w + 2) \cdot y \][/tex]

3. Distribute both sides:
[tex]\[ 4xz - 2z = wy + 2y \][/tex]

4. Rearrange to isolate the term involving [tex]\(w\)[/tex] on one side:
[tex]\[ wy = 4xz - 2z - 2y \][/tex]

5. Solve for [tex]\(w\)[/tex] by dividing both sides by [tex]\(y\)[/tex]:
[tex]\[ w = \frac{4xz - 2z - 2y}{y} \][/tex]

6. Let's simplify this expression by breaking it into separate fractions:
[tex]\[ w = \frac{4xz}{y} - \frac{2z}{y} - \frac{2y}{y} \][/tex]

7. Simplify each term individually:
[tex]\[ w = \frac{4xz}{y} - \frac{2z}{y} - 2 \][/tex]

Thus, the simplified expression for [tex]\(w\)[/tex] is:
[tex]\[ w = \frac{4xz - 2z - 2y}{y} \][/tex]

To further refine this, we notice:
[tex]\[ w = \frac{4z(x - 1) - 2y}{y} \][/tex]

And if desired, it can be simplified using factoring more cleanly:
[tex]\[ w = \frac{4z(x - 1)}{y} - 2 \][/tex]

Comparing this result with the provided options:

- Option 1: [tex]\( w = \frac{4xz - 1}{y} - 2 \)[/tex] (incorrect, not matching)
- Option 2: [tex]\( w = \frac{4xz - 2z}{y} \)[/tex] (correct, before the [tex]\(-2y\)[/tex] adjustment, therefore not matching here)
- Option 3: [tex]\( w = \frac{xz - z}{y} - 2 \)[/tex] (incorrect, doesn't simplify correctly)
- Option 4: [tex]\( w = \frac{4xz - 2z}{y} - 2 \)[/tex] (correct, matches after the simplification)

Hence, the correct answer is:
[tex]\[ w = \frac{4xz - 2z}{y} - 2 \][/tex]