Sure, let's continue solving the expression step by step.
We're given the expression to multiply: [tex]\(-c^2(3c - 2)\)[/tex].
### Step 1: Applying the Distributive Property
[tex]\[
-c^2(3c) + (-c^2)(-2)
\][/tex]
### Step 2: Perform the Multiplications
1. Multiply [tex]\(-c^2\)[/tex] by [tex]\(3c\)[/tex]:
[tex]\[
-c^2 \cdot 3c = -3c^3
\][/tex]
2. Multiply [tex]\(-c^2\)[/tex] by [tex]\(-2\)[/tex]:
[tex]\[
-c^2 \cdot -2 = 2c^2
\][/tex]
### Step 3: Combine the Results
Combining both terms, we get:
[tex]\[
-3c^3 + 2c^2
\][/tex]
### Answer
So, the result of multiplying [tex]\(-c^2(3c - 2)\)[/tex] is:
[tex]\[
-3c^3 + 2c^2
\][/tex]
Therefore, in the given incomplete expression [tex]\(c^3 + \square c^2\)[/tex], the values should be:
[tex]\[
c^3 \rightarrow -3c^3
\][/tex]
[tex]\[
\square c^2 \rightarrow 2c^2
\][/tex]