Multiply: [tex]-c^2(3c-2)[/tex]

1. Apply the distributive property.
[tex]-c^2(3c) + (-c^2)(-2)[/tex]

2. Multiply.
[tex]-3c^3 + 2c^2[/tex]



Answer :

Sure, let's continue solving the expression step by step.

We're given the expression to multiply: [tex]\(-c^2(3c - 2)\)[/tex].

### Step 1: Applying the Distributive Property

[tex]\[ -c^2(3c) + (-c^2)(-2) \][/tex]

### Step 2: Perform the Multiplications

1. Multiply [tex]\(-c^2\)[/tex] by [tex]\(3c\)[/tex]:
[tex]\[ -c^2 \cdot 3c = -3c^3 \][/tex]

2. Multiply [tex]\(-c^2\)[/tex] by [tex]\(-2\)[/tex]:
[tex]\[ -c^2 \cdot -2 = 2c^2 \][/tex]

### Step 3: Combine the Results

Combining both terms, we get:
[tex]\[ -3c^3 + 2c^2 \][/tex]

### Answer

So, the result of multiplying [tex]\(-c^2(3c - 2)\)[/tex] is:
[tex]\[ -3c^3 + 2c^2 \][/tex]

Therefore, in the given incomplete expression [tex]\(c^3 + \square c^2\)[/tex], the values should be:

[tex]\[ c^3 \rightarrow -3c^3 \][/tex]
[tex]\[ \square c^2 \rightarrow 2c^2 \][/tex]