The function [tex]$g$[/tex] is defined by [tex]$g(x)=2 x^2-7$[/tex].

Find [tex][tex]$g(4 z)$[/tex][/tex].

[tex]$g(4 z)=$[/tex]



Answer :

To find [tex]\( g(4z) \)[/tex] where the function [tex]\( g \)[/tex] is defined as [tex]\( g(x) = 2x^2 - 7 \)[/tex]:

1. First, identify the original function [tex]\( g(x) \)[/tex]:
[tex]\[ g(x) = 2x^2 - 7 \][/tex]

2. Substitute [tex]\( 4z \)[/tex] in place of [tex]\( x \)[/tex] in the function [tex]\( g(x) \)[/tex]:
[tex]\[ g(4z) = 2(4z)^2 - 7 \][/tex]

3. Calculate [tex]\( (4z)^2 \)[/tex]:
[tex]\[ (4z)^2 = 16z^2 \][/tex]

4. Substitute [tex]\( 16z^2 \)[/tex] back into the function:
[tex]\[ g(4z) = 2 \cdot 16z^2 - 7 \][/tex]

5. Simplify the expression:
[tex]\[ 2 \cdot 16z^2 = 32z^2 \][/tex]

So,
[tex]\[ g(4z) = 32z^2 - 7 \][/tex]

Thus, the result is:
[tex]\[ g(4z) = 32z^2 - 7 \][/tex]