Sure, let's solve this step-by-step.
We are given the equation:
[tex]\[
(x + 8, \frac{y}{2}) = (15, 2)
\][/tex]
### Step 1: Solve for [tex]\( x \)[/tex]
The first part of the equation is:
[tex]\[
x + 8 = 15
\][/tex]
To isolate [tex]\( x \)[/tex], we subtract 8 from both sides:
[tex]\[
x + 8 - 8 = 15 - 8
\][/tex]
[tex]\[
x = 7
\][/tex]
### Step 2: Solve for [tex]\( y \)[/tex]
The second part of the equation is:
[tex]\[
\frac{y}{2} = 2
\][/tex]
To isolate [tex]\( y \)[/tex], we multiply both sides by 2:
[tex]\[
\frac{y}{2} \times 2 = 2 \times 2
\][/tex]
[tex]\[
y = 4
\][/tex]
### Step 3: Calculate [tex]\( x + y \)[/tex]
Now that we have [tex]\( x = 7 \)[/tex] and [tex]\( y = 4 \)[/tex], we add these two values together:
[tex]\[
x + y = 7 + 4
\][/tex]
[tex]\[
x + y = 11
\][/tex]
### Conclusion
So, the value of [tex]\( x + y \)[/tex] is [tex]\( 11 \)[/tex].