Solve for [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \left(x+8, \frac{y}{2}\right) = (15, 2) \][/tex]

Find [tex]\( x + y \)[/tex].



Answer :

Sure, let's solve this step-by-step.

We are given the equation:
[tex]\[ (x + 8, \frac{y}{2}) = (15, 2) \][/tex]

### Step 1: Solve for [tex]\( x \)[/tex]

The first part of the equation is:
[tex]\[ x + 8 = 15 \][/tex]

To isolate [tex]\( x \)[/tex], we subtract 8 from both sides:
[tex]\[ x + 8 - 8 = 15 - 8 \][/tex]
[tex]\[ x = 7 \][/tex]

### Step 2: Solve for [tex]\( y \)[/tex]

The second part of the equation is:
[tex]\[ \frac{y}{2} = 2 \][/tex]

To isolate [tex]\( y \)[/tex], we multiply both sides by 2:
[tex]\[ \frac{y}{2} \times 2 = 2 \times 2 \][/tex]
[tex]\[ y = 4 \][/tex]

### Step 3: Calculate [tex]\( x + y \)[/tex]

Now that we have [tex]\( x = 7 \)[/tex] and [tex]\( y = 4 \)[/tex], we add these two values together:
[tex]\[ x + y = 7 + 4 \][/tex]
[tex]\[ x + y = 11 \][/tex]

### Conclusion

So, the value of [tex]\( x + y \)[/tex] is [tex]\( 11 \)[/tex].