Answer :
To determine the profit, we start by recalling that the profit is the difference between the revenue and the cost.
Given:
- The revenue polynomial [tex]\( R(x) = 2x^3 + 30x - 130 \)[/tex]
- The cost polynomial [tex]\( C(x) = 2x^3 - 3x - 520 \)[/tex]
We need to find the profit polynomial [tex]\( P(x) \)[/tex] by subtracting the cost polynomial from the revenue polynomial:
[tex]\[ P(x) = R(x) - C(x) \][/tex]
Let's break it down step by step:
1. Subtract the like terms of the polynomials:
[tex]\[ P(x) = (2x^3 + 30x - 130) - (2x^3 - 3x - 520) \][/tex]
2. Distribute the negative sign to the terms in the cost polynomial:
[tex]\[ P(x) = 2x^3 + 30x - 130 - 2x^3 + 3x + 520 \][/tex]
3. Combine the like terms:
- The [tex]\(2x^3\)[/tex] terms cancel each other out:
[tex]\[ 2x^3 - 2x^3 = 0 \][/tex]
- The [tex]\(30x\)[/tex] and [tex]\(3x\)[/tex] terms combine:
[tex]\[ 30x + 3x = 33x \][/tex]
- The constants [tex]\(-130\)[/tex] and [tex]\(520\)[/tex] terms combine:
[tex]\[ -130 + 520 = 390 \][/tex]
4. Putting it all together, we get:
[tex]\[ P(x) = 33x + 390 \][/tex]
Thus, the expression that represents the profit is:
[tex]\[ \boxed{33x + 390} \][/tex]
Given:
- The revenue polynomial [tex]\( R(x) = 2x^3 + 30x - 130 \)[/tex]
- The cost polynomial [tex]\( C(x) = 2x^3 - 3x - 520 \)[/tex]
We need to find the profit polynomial [tex]\( P(x) \)[/tex] by subtracting the cost polynomial from the revenue polynomial:
[tex]\[ P(x) = R(x) - C(x) \][/tex]
Let's break it down step by step:
1. Subtract the like terms of the polynomials:
[tex]\[ P(x) = (2x^3 + 30x - 130) - (2x^3 - 3x - 520) \][/tex]
2. Distribute the negative sign to the terms in the cost polynomial:
[tex]\[ P(x) = 2x^3 + 30x - 130 - 2x^3 + 3x + 520 \][/tex]
3. Combine the like terms:
- The [tex]\(2x^3\)[/tex] terms cancel each other out:
[tex]\[ 2x^3 - 2x^3 = 0 \][/tex]
- The [tex]\(30x\)[/tex] and [tex]\(3x\)[/tex] terms combine:
[tex]\[ 30x + 3x = 33x \][/tex]
- The constants [tex]\(-130\)[/tex] and [tex]\(520\)[/tex] terms combine:
[tex]\[ -130 + 520 = 390 \][/tex]
4. Putting it all together, we get:
[tex]\[ P(x) = 33x + 390 \][/tex]
Thus, the expression that represents the profit is:
[tex]\[ \boxed{33x + 390} \][/tex]