Which expression is equivalent to the following complex fraction?

[tex]\[
\frac{2 - \frac{1}{y}}{3 + \frac{1}{y}}
\][/tex]

A. [tex]\(\frac{3 y + 1}{2 y - 1}\)[/tex]

B. [tex]\(\frac{(2 y - 1)(3 y + 1)}{y^2}\)[/tex]

C. [tex]\(\frac{y^2}{(2 y - 1)(3 y + 1)}\)[/tex]

D. [tex]\(\frac{2 y - 1}{3 y + 1}\)[/tex]



Answer :

To determine which expression is equivalent to the given complex fraction, let's simplify the fraction step by step.

The given complex fraction is:

[tex]\[ \frac{2 - \frac{1}{y}}{3 + \frac{1}{y}} \][/tex]

To eliminate the fractions within the numerator and the denominator, let's find a common denominator for the terms in both the numerator and the denominator.

1. Combine terms in the numerator and denominator:
\b

Numerator: [tex]\(2 - \frac{1}{y} = \frac{2y - 1}{y}\)[/tex]

Denominator: [tex]\(3 + \frac{1}{y} = \frac{3y + 1}{y}\)[/tex]

Now the complex fraction becomes:

[tex]\[ \frac{\frac{2y - 1}{y}}{\frac{3y + 1}{y}} \][/tex]

2. Simplify the complex fraction by multiplying both the numerator and the denominator of the large fraction by [tex]\( y \)[/tex]:

[tex]\[ \frac{\frac{2y - 1}{y} \cdot y}{\frac{3y + 1}{y} \cdot y} = \frac{2y - 1}{3y + 1} \][/tex]

Thus, the simplified form of the given complex fraction is:

[tex]\[ \frac{2y - 1}{3y + 1} \][/tex]

Now, let's compare this result with the given choices:

[tex]\[ \frac{3 y+1}{2 y-1} \][/tex]
[tex]\[ \frac{(2 y-1)(3 y+1)}{y^2} \][/tex]
[tex]\[ \frac{y^2}{(2 y-1)(3 y+1)} \][/tex]
[tex]\[ \frac{2 y-1}{3 y+1} \][/tex]

The simplified expression [tex]\(\frac{2y - 1}{3y + 1}\)[/tex] exactly matches the fourth choice. Therefore, the correct answer is:
[tex]\(\frac{2 y-1}{3 y+1}\)[/tex]

So, the expression equivalent to the given complex fraction is:
[tex]\[ \boxed{4} \][/tex]