Simplify the following with no negative exponents:

[tex]\[ \left(2 x^2 y^4\right)^5\left(z^2\right)^4 \][/tex]

A. [tex]\( 2 x^7 y^9 z^6 \)[/tex]

B. [tex]\( 32 x^{10} y^{20} z^8 \)[/tex]

C. [tex]\( 2 x^{10} y^{20} z^8 \)[/tex]

D. [tex]\( 32 x^7 y^9 z^6 \)[/tex]



Answer :

To simplify the expression [tex]\(\left(2 x^2 y^4\right)^5\left(z^2\right)^4\)[/tex] without any negative exponents, we will proceed step-by-step.

1. Apply the power rule to each part of [tex]\(\left(2 x^2 y^4\right)^5\)[/tex]:
The power rule states [tex]\((a \cdot b \cdot c)^n = a^n \cdot b^n \cdot c^n\)[/tex].

So,
[tex]\[ \left(2 x^2 y^4\right)^5 = 2^5 \cdot (x^2)^5 \cdot (y^4)^5 \][/tex]

2. Simplify each term individually in [tex]\(\left(2 x^2 y^4\right)^5\)[/tex]:
[tex]\[ 2^5 = 32 \][/tex]
[tex]\[ (x^2)^5 = x^{2 \cdot 5} = x^{10} \][/tex]
[tex]\[ (y^4)^5 = y^{4 \cdot 5} = y^{20} \][/tex]

So,
[tex]\[ \left(2 x^2 y^4\right)^5 = 32 x^{10} y^{20} \][/tex]

3. Apply the power rule to [tex]\((z^2)^4\)[/tex]:
[tex]\[ (z^2)^4 = z^{2 \cdot 4} = z^8 \][/tex]

4. Multiply the results together:
[tex]\[ 32 x^{10} y^{20} \cdot z^8 = 32 x^{10} y^{20} z^8 \][/tex]

Therefore, the simplified expression is:
[tex]\[ 32 x^{10} y^{20} z^8 \][/tex]

So among the given options, the correct one is:
[tex]\[ 32 x^{10} y^{20} z^8 \][/tex]