Use the drawing tool to form the correct answers on the provided graph.

A student observes that the motion of a weight oscillating up and down on a spring can be modeled by this equation, where [tex]\( h(t) \)[/tex] is the weight's height above the ground, in meters, and [tex]\( t \)[/tex] is the time, in seconds.

[tex]\[
h(t) = 0.5 \sin \left(\pi t + \frac{\pi}{2}\right) + 1
\][/tex]

On the graph, plot the points where height, [tex]\( h(t) \)[/tex], is at a maximum.



Answer :

To find the points where the height [tex]\( h(t) \)[/tex] is at a maximum, we need to analyze the given equation:

[tex]\[ h(t) = 0.5 \sin \left(\pi t + \frac{\pi}{2}\right) + 1 \][/tex]

First, we look at the sine function [tex]\( \sin \left(\pi t + \frac{\pi}{2}\right) \)[/tex]. The sine function oscillates between -1 and 1. To find the maximum height, we need:

[tex]\[ \sin \left(\pi t + \frac{\pi}{2}\right) = 1 \][/tex]

The sine function [tex]\( \sin(x) \)[/tex] equals 1 at:

[tex]\[ x = \frac{\pi}{2} + 2k\pi \quad \text{for integers } k \][/tex]

So for the argument of the sine function, we have:

[tex]\[ \pi t + \frac{\pi}{2} = \frac{\pi}{2} + 2k\pi \][/tex]

Solving for [tex]\( t \)[/tex]:

[tex]\[ \pi t + \frac{\pi}{2} = \frac{\pi}{2} + 2k\pi \][/tex]
[tex]\[ \pi t = 2k\pi \][/tex]
[tex]\[ t = 2k \quad \text{for integers } k \][/tex]

Thus, [tex]\( t = 0, 2, 4, 6, \ldots \)[/tex].

For each of these [tex]\( t \)[/tex]-values, the corresponding height [tex]\( h(t) \)[/tex] is:

[tex]\[ h(t) = 0.5 \times 1 + 1 = 1.5 \][/tex]

Therefore, the points where the height [tex]\( h(t) \)[/tex] is at a maximum are:

[tex]\[ (0, 1.5), (2, 1.5), (4, 1.5), (6, 1.5), \ldots \][/tex]

On the graph, plot the points [tex]\( (0, 1.5) \)[/tex], [tex]\( (2, 1.5) \)[/tex], [tex]\( (4, 1.5) \)[/tex], [tex]\( (6, 1.5) \)[/tex], and so on.