Solve [tex]$w = t\left(r_1 + r_2\right)$[/tex] for [tex]$t$[/tex].

A. [tex]$t = w\left(r_1 + r_2\right)$[/tex]
B. [tex]$t = \frac{w}{\left(r_1 + r_2\right)}$[/tex]
C. [tex][tex]$t = w - \left(r_1 + r_2\right)$[/tex][/tex]



Answer :

To solve the equation [tex]\( w = t(r_1 + r_2) \)[/tex] for [tex]\( t \)[/tex], we need to isolate [tex]\( t \)[/tex] on one side of the equation. Let's go through the steps in detail:

1. Start with the given equation:
[tex]\[ w = t(r_1 + r_2) \][/tex]

2. Isolate [tex]\( t \)[/tex] by dividing both sides of the equation by [tex]\( (r_1 + r_2) \)[/tex]:
[tex]\[ \frac{w}{r_1 + r_2} = \frac{t(r_1 + r_2)}{r_1 + r_2} \][/tex]

3. Simplify the right side of the equation:
Since [tex]\( (r_1 + r_2) \)[/tex] appears in both the numerator and the denominator on the right side, they cancel out:
[tex]\[ \frac{w}{r_1 + r_2} = t \][/tex]

4. Thus, the solution for [tex]\( t \)[/tex] is:
[tex]\[ t = \frac{w}{r_1 + r_2} \][/tex]

Therefore, the correct formulation solving for [tex]\( t \)[/tex] is:
[tex]\[ t = \frac{w}{r_1 + r_2} \][/tex]

This is the correct solution for the given equation [tex]\( w = t(r_1 + r_2) \)[/tex].