To solve the problem, we need to substitute the given value of [tex]\( x = 3 \)[/tex] into the equation [tex]\( y = x^2 - 2x - 3 \)[/tex] and then calculate [tex]\( y \)[/tex].
Here is the step-by-step process:
1. Start with the given equation:
[tex]\[
y = x^2 - 2x - 3
\][/tex]
2. Substitute [tex]\( x = 3 \)[/tex] into the equation:
[tex]\[
y = (3)^2 - 2(3) - 3
\][/tex]
3. Calculate the value within the parentheses and the multiplication:
[tex]\[
y = 9 - 6 - 3
\][/tex]
4. Perform the subtraction step-by-step:
[tex]\[
9 - 6 = 3
\][/tex]
[tex]\[
3 - 3 = 0
\][/tex]
Therefore, when [tex]\( x = 3 \)[/tex], the value of [tex]\( y \)[/tex] is [tex]\( 0 \)[/tex].
So, the correct answer is:
B 0