Answer :
Let's solve each inequality step-by-step to match it with its solution on the number line.
1. Inequality: [tex]\( x - 99 \leq -104 \)[/tex]
Step-by-step solution:
[tex]\[ x - 99 \leq -104 \][/tex]
Add [tex]\(99\)[/tex] to both sides:
[tex]\[ x \leq -104 + 99 \][/tex]
Simplify:
[tex]\[ x \leq -5 \][/tex]
Solution on the number line:
[tex]\[ (-\infty, -5] \][/tex]
2. Inequality: [tex]\( x - 51 \leq -43 \)[/tex]
Step-by-step solution:
[tex]\[ x - 51 \leq -43 \][/tex]
Add [tex]\(51\)[/tex] to both sides:
[tex]\[ x \leq -43 + 51 \][/tex]
Simplify:
[tex]\[ x \leq 8 \][/tex]
Solution on the number line:
[tex]\[ (-\infty, 8] \][/tex]
3. Inequality: [tex]\( 150 + x \leq 144 \)[/tex]
Step-by-step solution:
[tex]\[ 150 + x \leq 144 \][/tex]
Subtract [tex]\(150\)[/tex] from both sides:
[tex]\[ x \leq 144 - 150 \][/tex]
Simplify:
[tex]\[ x \leq -6 \][/tex]
Solution on the number line:
[tex]\[ (-\infty, -6] \][/tex]
4. Inequality: [tex]\( 75 < 69 - x \)[/tex]
Step-by-step solution:
[tex]\[ 75 < 69 - x \][/tex]
Subtract [tex]\(69\)[/tex] from both sides:
[tex]\[ 75 - 69 < -x \][/tex]
Simplify:
[tex]\[ 6 < -x \][/tex]
Divide both sides by [tex]\(-1\)[/tex] (remember to reverse inequality):
[tex]\[ -6 > x \implies x < -6 \][/tex]
Solution on the number line:
[tex]\[ (-\infty, -6) \][/tex]
5. Matching each inequality to its solution range on the number line:
- For [tex]\( x - 99 \leq -104 \)[/tex], the solution is [tex]\( (-\infty, -5] \)[/tex];
- For [tex]\( x - 51 \leq -43 \)[/tex], the solution is [tex]\( (-\infty, 8] \)[/tex];
- For [tex]\( 150 + x \leq 144 \)[/tex], the solution is [tex]\( (-\infty, -6] \)[/tex];
- For [tex]\( 75 < 69 - x \)[/tex], the solution is [tex]\( (-\infty, -6) \)[/tex].
1. Inequality: [tex]\( x - 99 \leq -104 \)[/tex]
Step-by-step solution:
[tex]\[ x - 99 \leq -104 \][/tex]
Add [tex]\(99\)[/tex] to both sides:
[tex]\[ x \leq -104 + 99 \][/tex]
Simplify:
[tex]\[ x \leq -5 \][/tex]
Solution on the number line:
[tex]\[ (-\infty, -5] \][/tex]
2. Inequality: [tex]\( x - 51 \leq -43 \)[/tex]
Step-by-step solution:
[tex]\[ x - 51 \leq -43 \][/tex]
Add [tex]\(51\)[/tex] to both sides:
[tex]\[ x \leq -43 + 51 \][/tex]
Simplify:
[tex]\[ x \leq 8 \][/tex]
Solution on the number line:
[tex]\[ (-\infty, 8] \][/tex]
3. Inequality: [tex]\( 150 + x \leq 144 \)[/tex]
Step-by-step solution:
[tex]\[ 150 + x \leq 144 \][/tex]
Subtract [tex]\(150\)[/tex] from both sides:
[tex]\[ x \leq 144 - 150 \][/tex]
Simplify:
[tex]\[ x \leq -6 \][/tex]
Solution on the number line:
[tex]\[ (-\infty, -6] \][/tex]
4. Inequality: [tex]\( 75 < 69 - x \)[/tex]
Step-by-step solution:
[tex]\[ 75 < 69 - x \][/tex]
Subtract [tex]\(69\)[/tex] from both sides:
[tex]\[ 75 - 69 < -x \][/tex]
Simplify:
[tex]\[ 6 < -x \][/tex]
Divide both sides by [tex]\(-1\)[/tex] (remember to reverse inequality):
[tex]\[ -6 > x \implies x < -6 \][/tex]
Solution on the number line:
[tex]\[ (-\infty, -6) \][/tex]
5. Matching each inequality to its solution range on the number line:
- For [tex]\( x - 99 \leq -104 \)[/tex], the solution is [tex]\( (-\infty, -5] \)[/tex];
- For [tex]\( x - 51 \leq -43 \)[/tex], the solution is [tex]\( (-\infty, 8] \)[/tex];
- For [tex]\( 150 + x \leq 144 \)[/tex], the solution is [tex]\( (-\infty, -6] \)[/tex];
- For [tex]\( 75 < 69 - x \)[/tex], the solution is [tex]\( (-\infty, -6) \)[/tex].