Find the product of [tex]\sqrt{12}[/tex] and [tex]\frac{5}{6}[/tex]. What type of number is it?

A. 2.6307...; an irrational number
B. 4.2974...; an irrational number
C. 2.8867...; an irrational number
D. 4.1569...; an irrational number



Answer :

To find the product of [tex]\(\sqrt{12}\)[/tex] and [tex]\(\frac{5}{6}\)[/tex], we follow these steps:

1. Calculate [tex]\(\sqrt{12}\)[/tex]:

[tex]\(\sqrt{12} \approx 3.4641016151377544\)[/tex]

2. Determine the fraction [tex]\(\frac{5}{6}\)[/tex]:

[tex]\(\frac{5}{6} \approx 0.8333333333333334\)[/tex]

3. Multiply [tex]\(\sqrt{12}\)[/tex] by [tex]\(\frac{5}{6}\)[/tex]:

[tex]\[ 3.4641016151377544 \times 0.8333333333333334 \approx 2.8867513459481287 \][/tex]

The result of this calculation is approximately [tex]\(2.8867513459481287\)[/tex].

4. Determine the type of number:

Since the product [tex]\(2.8867513459481287\)[/tex] is not a simple fraction or a repeating decimal, it is considered an irrational number.

Therefore, the product of [tex]\(\sqrt{12}\)[/tex] and [tex]\(\frac{5}{6}\)[/tex] is approximately [tex]\(2.8867513459481287\)[/tex], which is an irrational number. The correct option is:

[tex]\[ \boxed{2.8867\ldots; \text{an irrational number}} \][/tex]